On special Riemannian $3$-manifolds with distinct constant Ricci eigenvalues
Mathematica Bohemica, Tome 124 (1999) no. 1, pp. 45-66.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The first author and F. Prufer gave an explicit classification of all Riemannian 3-manifolds with distinct constant Ricci eigenvalues and satisfying additional geometrical conditions. The aim of the present paper is to get the same classification under weaker geometrical conditions.
DOI : 10.21136/MB.1999.125981
Classification : 53B20, 53C20, 53C21, 53C25, 53C30
Keywords: Riemannian manifold; constant principal Ricci curvatures
@article{10_21136_MB_1999_125981,
     author = {Kowalski, Old\v{r}ich and Vl\'a\v{s}ek, Zden\v{e}k},
     title = {On special {Riemannian} $3$-manifolds with distinct constant {Ricci} eigenvalues},
     journal = {Mathematica Bohemica},
     pages = {45--66},
     publisher = {mathdoc},
     volume = {124},
     number = {1},
     year = {1999},
     doi = {10.21136/MB.1999.125981},
     mrnumber = {1687417},
     zbl = {0934.53027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125981/}
}
TY  - JOUR
AU  - Kowalski, Oldřich
AU  - Vlášek, Zdeněk
TI  - On special Riemannian $3$-manifolds with distinct constant Ricci eigenvalues
JO  - Mathematica Bohemica
PY  - 1999
SP  - 45
EP  - 66
VL  - 124
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125981/
DO  - 10.21136/MB.1999.125981
LA  - en
ID  - 10_21136_MB_1999_125981
ER  - 
%0 Journal Article
%A Kowalski, Oldřich
%A Vlášek, Zdeněk
%T On special Riemannian $3$-manifolds with distinct constant Ricci eigenvalues
%J Mathematica Bohemica
%D 1999
%P 45-66
%V 124
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125981/
%R 10.21136/MB.1999.125981
%G en
%F 10_21136_MB_1999_125981
Kowalski, Oldřich; Vlášek, Zdeněk. On special Riemannian $3$-manifolds with distinct constant Ricci eigenvalues. Mathematica Bohemica, Tome 124 (1999) no. 1, pp. 45-66. doi : 10.21136/MB.1999.125981. http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125981/

Cité par Sources :