On systems of linear algebraic equations in the Colombeau algebra
Mathematica Bohemica, Tome 124 (1999) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

From the fact that the unique solution of a homogeneous linear algebraic system is the trivial one we can obtain the existence of a solution of the nonhomogeneous system. Coefficients of the systems considered are elements of the Colombeau algebra $\overline{\Bbb R}$ of generalized real numbers. It is worth mentioning that the algebra $\overline{\Bbb R}$ is not a field.
DOI : 10.21136/MB.1999.125977
Classification : 15A06, 46F30, 46F99
Keywords: Colombeau algebra; system of linear equations; generalized real numbers
@article{10_21136_MB_1999_125977,
     author = {Lig\k{e}za, J. and Tvrd\'y, M.},
     title = {On systems of linear algebraic equations in the {Colombeau} algebra},
     journal = {Mathematica Bohemica},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {124},
     number = {1},
     year = {1999},
     doi = {10.21136/MB.1999.125977},
     mrnumber = {1687437},
     zbl = {0940.46022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125977/}
}
TY  - JOUR
AU  - Ligęza, J.
AU  - Tvrdý, M.
TI  - On systems of linear algebraic equations in the Colombeau algebra
JO  - Mathematica Bohemica
PY  - 1999
SP  - 1
EP  - 14
VL  - 124
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125977/
DO  - 10.21136/MB.1999.125977
LA  - en
ID  - 10_21136_MB_1999_125977
ER  - 
%0 Journal Article
%A Ligęza, J.
%A Tvrdý, M.
%T On systems of linear algebraic equations in the Colombeau algebra
%J Mathematica Bohemica
%D 1999
%P 1-14
%V 124
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125977/
%R 10.21136/MB.1999.125977
%G en
%F 10_21136_MB_1999_125977
Ligęza, J.; Tvrdý, M. On systems of linear algebraic equations in the Colombeau algebra. Mathematica Bohemica, Tome 124 (1999) no. 1, pp. 1-14. doi : 10.21136/MB.1999.125977. http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125977/

Cité par Sources :