On one-sided estimates for row-finite systems of ordinary differential equations
Mathematica Bohemica, Tome 124 (1999) no. 1, pp. 67-76.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove an existence and uniqueness theorem for row-finite initial value problems. The right-hand side of the differential equation is supposed to satisfy a one-sided matrix Lipschitz condition with a quasimonotone row-finite matrix which has an at most countable spectrum.
DOI : 10.21136/MB.1999.125972
Classification : 34A12, 34G20
Keywords: Fréchet spaces; row-finite systems; one-sided estimates; row-finite matrices
@article{10_21136_MB_1999_125972,
     author = {Herzog, Gerd},
     title = {On one-sided estimates for row-finite systems of ordinary differential equations},
     journal = {Mathematica Bohemica},
     pages = {67--76},
     publisher = {mathdoc},
     volume = {124},
     number = {1},
     year = {1999},
     doi = {10.21136/MB.1999.125972},
     mrnumber = {1687421},
     zbl = {0937.34004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125972/}
}
TY  - JOUR
AU  - Herzog, Gerd
TI  - On one-sided estimates for row-finite systems of ordinary differential equations
JO  - Mathematica Bohemica
PY  - 1999
SP  - 67
EP  - 76
VL  - 124
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125972/
DO  - 10.21136/MB.1999.125972
LA  - en
ID  - 10_21136_MB_1999_125972
ER  - 
%0 Journal Article
%A Herzog, Gerd
%T On one-sided estimates for row-finite systems of ordinary differential equations
%J Mathematica Bohemica
%D 1999
%P 67-76
%V 124
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125972/
%R 10.21136/MB.1999.125972
%G en
%F 10_21136_MB_1999_125972
Herzog, Gerd. On one-sided estimates for row-finite systems of ordinary differential equations. Mathematica Bohemica, Tome 124 (1999) no. 1, pp. 67-76. doi : 10.21136/MB.1999.125972. http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125972/

Cité par Sources :