Asymptotic relationship between solutions of two linear differential systems
Mathematica Bohemica, Tome 123 (1998) no. 2, pp. 163-175.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper new generalized notions are defined: ${\bold\Psi}$-boundedness and ${\bold\Psi}$-asymptotic equivalence, where ${\bold\Psi}$ is a complex continuous nonsingular $n\times n$ matrix. The ${\bold\Psi}$-asymptotic equivalence of linear differential systems $ y'= A(t) y$ and $ x'= A(t) x+ B(t) x$ is proved when the fundamental matrix of $ y'= A(t) y$ is ${\bold\Psi}$-bounded.
DOI : 10.21136/MB.1998.126305
Classification : 34A30, 34C11, 34E10
Keywords: ${\bold\Psi}$-boundedness; ${\bold\Psi}$-asymptotic equivalence
@article{10_21136_MB_1998_126305,
     author = {Miklo, Jozef},
     title = {Asymptotic relationship between solutions of two linear differential systems},
     journal = {Mathematica Bohemica},
     pages = {163--175},
     publisher = {mathdoc},
     volume = {123},
     number = {2},
     year = {1998},
     doi = {10.21136/MB.1998.126305},
     mrnumber = {1673981},
     zbl = {0944.34030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126305/}
}
TY  - JOUR
AU  - Miklo, Jozef
TI  - Asymptotic relationship between solutions of two linear differential systems
JO  - Mathematica Bohemica
PY  - 1998
SP  - 163
EP  - 175
VL  - 123
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126305/
DO  - 10.21136/MB.1998.126305
LA  - en
ID  - 10_21136_MB_1998_126305
ER  - 
%0 Journal Article
%A Miklo, Jozef
%T Asymptotic relationship between solutions of two linear differential systems
%J Mathematica Bohemica
%D 1998
%P 163-175
%V 123
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126305/
%R 10.21136/MB.1998.126305
%G en
%F 10_21136_MB_1998_126305
Miklo, Jozef. Asymptotic relationship between solutions of two linear differential systems. Mathematica Bohemica, Tome 123 (1998) no. 2, pp. 163-175. doi : 10.21136/MB.1998.126305. http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126305/

Cité par Sources :