On the set of solutions of the system $x\sb 1+x\sb 2+x\sb 3=1, x\sb 1x\sb 2x\sb 3=1$
Mathematica Bohemica, Tome 123 (1998) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A proof is given that the system in the title has infinitely many solutions of the form $a_1 + \ii a_2$, where $a_1$ and $a_2$ are rational numbers.
DOI : 10.21136/MB.1998.126294
Classification : 10B05, 10M05, 11D04, 11D25, 11D72, 11G05
Keywords: equations in many variables; linear diophantine equations; multiplicative equations; Weierstrass $p$-function; diophantine equations
@article{10_21136_MB_1998_126294,
     author = {Hlav\'a\v{c}ek, Miloslav},
     title = {On the set of solutions of the system $x\sb 1+x\sb 2+x\sb 3=1, x\sb 1x\sb 2x\sb 3=1$},
     journal = {Mathematica Bohemica},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {123},
     number = {1},
     year = {1998},
     doi = {10.21136/MB.1998.126294},
     mrnumber = {1618699},
     zbl = {0898.11008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126294/}
}
TY  - JOUR
AU  - Hlaváček, Miloslav
TI  - On the set of solutions of the system $x\sb 1+x\sb 2+x\sb 3=1, x\sb 1x\sb 2x\sb 3=1$
JO  - Mathematica Bohemica
PY  - 1998
SP  - 1
EP  - 6
VL  - 123
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126294/
DO  - 10.21136/MB.1998.126294
LA  - en
ID  - 10_21136_MB_1998_126294
ER  - 
%0 Journal Article
%A Hlaváček, Miloslav
%T On the set of solutions of the system $x\sb 1+x\sb 2+x\sb 3=1, x\sb 1x\sb 2x\sb 3=1$
%J Mathematica Bohemica
%D 1998
%P 1-6
%V 123
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126294/
%R 10.21136/MB.1998.126294
%G en
%F 10_21136_MB_1998_126294
Hlaváček, Miloslav. On the set of solutions of the system $x\sb 1+x\sb 2+x\sb 3=1, x\sb 1x\sb 2x\sb 3=1$. Mathematica Bohemica, Tome 123 (1998) no. 1, pp. 1-6. doi : 10.21136/MB.1998.126294. http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126294/

Cité par Sources :