Reflected double layer potentials and Cauchy's operators
Mathematica Bohemica, Tome 123 (1998) no. 3, pp. 295-300.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Necessary and sufficient conditions are given for the reflected Cauchy's operator (the reflected double layer potential operator) to be continuous as an operator from the space of all continuous functions on the boundary of the investigated domain to the space of all holomorphic functions on this domain (to the space of all harmonic functions on this domain) equipped with the topology of locally uniform convergence.
DOI : 10.21136/MB.1998.126069
Classification : 30E20, 31A15, 46E10
Keywords: holomorphic function; reflected Cauchy’s operator; reflected double layer potential
@article{10_21136_MB_1998_126069,
     author = {Medkov\'a, Dagmar},
     title = {Reflected double layer potentials and {Cauchy's} operators},
     journal = {Mathematica Bohemica},
     pages = {295--300},
     publisher = {mathdoc},
     volume = {123},
     number = {3},
     year = {1998},
     doi = {10.21136/MB.1998.126069},
     mrnumber = {1645450},
     zbl = {0942.30024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126069/}
}
TY  - JOUR
AU  - Medková, Dagmar
TI  - Reflected double layer potentials and Cauchy's operators
JO  - Mathematica Bohemica
PY  - 1998
SP  - 295
EP  - 300
VL  - 123
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126069/
DO  - 10.21136/MB.1998.126069
LA  - en
ID  - 10_21136_MB_1998_126069
ER  - 
%0 Journal Article
%A Medková, Dagmar
%T Reflected double layer potentials and Cauchy's operators
%J Mathematica Bohemica
%D 1998
%P 295-300
%V 123
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126069/
%R 10.21136/MB.1998.126069
%G en
%F 10_21136_MB_1998_126069
Medková, Dagmar. Reflected double layer potentials and Cauchy's operators. Mathematica Bohemica, Tome 123 (1998) no. 3, pp. 295-300. doi : 10.21136/MB.1998.126069. http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126069/

Cité par Sources :