Remarks on generalized solutions of ordinary linear differential equations in the Colombeau algebra
Mathematica Bohemica, Tome 123 (1998) no. 3, pp. 301-316.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper first order linear ordinary differential equations are considered. It is shown that the Cauchy problem for these systems has a unique solution in $ {\Cal G}^n (\Bbb R) $, where $ {\Cal G} (\Bbb R) $ denotes the Colombeau algebra.
DOI : 10.21136/MB.1998.126067
Classification : 34A10, 34A12, 34A30, 46F10, 46F99
Keywords: generalized ordinary differential equations; Cauchy problem; distributions; Colombeau algebra
@article{10_21136_MB_1998_126067,
     author = {Lig\k{e}za, Jan},
     title = {Remarks on generalized solutions of ordinary linear differential equations in the {Colombeau} algebra},
     journal = {Mathematica Bohemica},
     pages = {301--316},
     publisher = {mathdoc},
     volume = {123},
     number = {3},
     year = {1998},
     doi = {10.21136/MB.1998.126067},
     mrnumber = {1645454},
     zbl = {0937.34003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126067/}
}
TY  - JOUR
AU  - Ligęza, Jan
TI  - Remarks on generalized solutions of ordinary linear differential equations in the Colombeau algebra
JO  - Mathematica Bohemica
PY  - 1998
SP  - 301
EP  - 316
VL  - 123
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126067/
DO  - 10.21136/MB.1998.126067
LA  - en
ID  - 10_21136_MB_1998_126067
ER  - 
%0 Journal Article
%A Ligęza, Jan
%T Remarks on generalized solutions of ordinary linear differential equations in the Colombeau algebra
%J Mathematica Bohemica
%D 1998
%P 301-316
%V 123
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126067/
%R 10.21136/MB.1998.126067
%G en
%F 10_21136_MB_1998_126067
Ligęza, Jan. Remarks on generalized solutions of ordinary linear differential equations in the Colombeau algebra. Mathematica Bohemica, Tome 123 (1998) no. 3, pp. 301-316. doi : 10.21136/MB.1998.126067. http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.126067/

Cité par Sources :