Digraphs contractible onto $\sp *K\sb 3$
Mathematica Bohemica, Tome 123 (1998) no. 4, pp. 365-369.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that any digraph on $n\ge3$ vertices and with not less than $3n-3$ arcs is contractible onto ${}^*\!K_3$.
DOI : 10.21136/MB.1998.125971
Classification : 05C20
Keywords: digraph; minor; contraction
@article{10_21136_MB_1998_125971,
     author = {Janaqi, Stefan and Lescure, F. and Maamoun, M. and Meyniel, H.},
     title = {Digraphs contractible onto $\sp *K\sb 3$},
     journal = {Mathematica Bohemica},
     pages = {365--369},
     publisher = {mathdoc},
     volume = {123},
     number = {4},
     year = {1998},
     doi = {10.21136/MB.1998.125971},
     mrnumber = {1667109},
     zbl = {0934.05069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125971/}
}
TY  - JOUR
AU  - Janaqi, Stefan
AU  - Lescure, F.
AU  - Maamoun, M.
AU  - Meyniel, H.
TI  - Digraphs contractible onto $\sp *K\sb 3$
JO  - Mathematica Bohemica
PY  - 1998
SP  - 365
EP  - 369
VL  - 123
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125971/
DO  - 10.21136/MB.1998.125971
LA  - en
ID  - 10_21136_MB_1998_125971
ER  - 
%0 Journal Article
%A Janaqi, Stefan
%A Lescure, F.
%A Maamoun, M.
%A Meyniel, H.
%T Digraphs contractible onto $\sp *K\sb 3$
%J Mathematica Bohemica
%D 1998
%P 365-369
%V 123
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125971/
%R 10.21136/MB.1998.125971
%G en
%F 10_21136_MB_1998_125971
Janaqi, Stefan; Lescure, F.; Maamoun, M.; Meyniel, H. Digraphs contractible onto $\sp *K\sb 3$. Mathematica Bohemica, Tome 123 (1998) no. 4, pp. 365-369. doi : 10.21136/MB.1998.125971. http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125971/

Cité par Sources :