Generalized boundary value problems with linear growth
Mathematica Bohemica, Tome 123 (1998) no. 4, pp. 385-404.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that for a given system of linearly independent linear continuous functionals $l_i C^{n-1} \to\bb R$, $i=1,\dots,n$, the set of all $n$-th order linear differential equations such that the Green function for the corresponding generalized boundary value problem (BVP for short) exists is open and dense in the space of all $n$-th order linear differential equations. Then the generic properties of the set of all solutions to nonlinear BVP-s are investigated in the case when the nonlinearity in the differential equation has a linear majorant. A periodic BVP is also studied.
DOI : 10.21136/MB.1998.125969
Classification : 34B15, 34B27, 34C11, 34C25
Keywords: generic properties; periodic boundary value problem
@article{10_21136_MB_1998_125969,
     author = {\v{S}eda, Valter},
     title = {Generalized boundary value problems with linear growth},
     journal = {Mathematica Bohemica},
     pages = {385--404},
     publisher = {mathdoc},
     volume = {123},
     number = {4},
     year = {1998},
     doi = {10.21136/MB.1998.125969},
     mrnumber = {1667111},
     zbl = {0937.34019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125969/}
}
TY  - JOUR
AU  - Šeda, Valter
TI  - Generalized boundary value problems with linear growth
JO  - Mathematica Bohemica
PY  - 1998
SP  - 385
EP  - 404
VL  - 123
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125969/
DO  - 10.21136/MB.1998.125969
LA  - en
ID  - 10_21136_MB_1998_125969
ER  - 
%0 Journal Article
%A Šeda, Valter
%T Generalized boundary value problems with linear growth
%J Mathematica Bohemica
%D 1998
%P 385-404
%V 123
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125969/
%R 10.21136/MB.1998.125969
%G en
%F 10_21136_MB_1998_125969
Šeda, Valter. Generalized boundary value problems with linear growth. Mathematica Bohemica, Tome 123 (1998) no. 4, pp. 385-404. doi : 10.21136/MB.1998.125969. http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125969/

Cité par Sources :