Essential norms of a potential theoretic boundary integral operator in $L\sp 1$
Mathematica Bohemica, Tome 123 (1998) no. 4, pp. 419-436.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G \subset\Bbb R^m$ $(m \ge2)$ be an open set with a compact boundary $B$ and let $\sigma\ge0$ be a finite measure on $B$. Consider the space $L^1(\sigma)$ of all $\sigma$-integrable functions on $B$ and, for each $f \in L^1(\sigma)$, denote by $f \sigma$ the signed measure on $B$ arising by multiplying $\sigma$ by $f$ in the usual way. $\Cal N_{\sigma}f$ denotes the weak normal derivative (w.r. to $G$) of the Newtonian (in case $m >2$) or the logarithmic (in case $n=2$) potential of $f\sigma$, correspondingly. Sharp geometric estimates are obtained for the essential norms of the operator $\Cal N_{\sigma} - \alpha I$ (here $\alpha\in\Bbb R$ and $I$ stands for the identity operator on $L^1(\sigma)$) corresponding to various norms on $L^1(\sigma)$ inducing the topology of standard convergence in the mean w.r. to $\sigma$.
DOI : 10.21136/MB.1998.125966
Classification : 31A10, 31B10, 31B20, 31B25
Keywords: single layer potential; weak normal derivative; essential norm
@article{10_21136_MB_1998_125966,
     author = {Kr\'al, Josef and Medkov\'a, Dagmar},
     title = {Essential norms of a potential theoretic boundary integral operator in $L\sp 1$},
     journal = {Mathematica Bohemica},
     pages = {419--436},
     publisher = {mathdoc},
     volume = {123},
     number = {4},
     year = {1998},
     doi = {10.21136/MB.1998.125966},
     mrnumber = {1667114},
     zbl = {0936.31007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125966/}
}
TY  - JOUR
AU  - Král, Josef
AU  - Medková, Dagmar
TI  - Essential norms of a potential theoretic boundary integral operator in $L\sp 1$
JO  - Mathematica Bohemica
PY  - 1998
SP  - 419
EP  - 436
VL  - 123
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125966/
DO  - 10.21136/MB.1998.125966
LA  - en
ID  - 10_21136_MB_1998_125966
ER  - 
%0 Journal Article
%A Král, Josef
%A Medková, Dagmar
%T Essential norms of a potential theoretic boundary integral operator in $L\sp 1$
%J Mathematica Bohemica
%D 1998
%P 419-436
%V 123
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125966/
%R 10.21136/MB.1998.125966
%G en
%F 10_21136_MB_1998_125966
Král, Josef; Medková, Dagmar. Essential norms of a potential theoretic boundary integral operator in $L\sp 1$. Mathematica Bohemica, Tome 123 (1998) no. 4, pp. 419-436. doi : 10.21136/MB.1998.125966. http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125966/

Cité par Sources :