MV-algebras are categorically equivalent to a class of $\scr{DR}l\sb {1(i)}$-semigroups
Mathematica Bohemica, Tome 123 (1998) no. 4, pp. 437-441.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper it is proved that the category of \MV-algebras is equivalent to the category of bounded \DRl-semigroups satisfying the identity $1-(1-x)=x$. Consequently, by a result of D. Mundici, both categories are equivalent to the category of bounded commutative \BCK-algebras.
DOI : 10.21136/MB.1998.125964
Classification : 03G20, 06D30, 06D35, 06F05, 06F35
Keywords: categorical equivalence; bounded \BCK-algebra; \MV-algebra; \DRl-semigroup
@article{10_21136_MB_1998_125964,
     author = {Rach\r{u}nek, Ji\v{r}{\'\i}},
     title = {MV-algebras are categorically equivalent to a class of $\scr{DR}l\sb {1(i)}$-semigroups},
     journal = {Mathematica Bohemica},
     pages = {437--441},
     publisher = {mathdoc},
     volume = {123},
     number = {4},
     year = {1998},
     doi = {10.21136/MB.1998.125964},
     mrnumber = {1667115},
     zbl = {0934.06014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125964/}
}
TY  - JOUR
AU  - Rachůnek, Jiří
TI  - MV-algebras are categorically equivalent to a class of $\scr{DR}l\sb {1(i)}$-semigroups
JO  - Mathematica Bohemica
PY  - 1998
SP  - 437
EP  - 441
VL  - 123
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125964/
DO  - 10.21136/MB.1998.125964
LA  - en
ID  - 10_21136_MB_1998_125964
ER  - 
%0 Journal Article
%A Rachůnek, Jiří
%T MV-algebras are categorically equivalent to a class of $\scr{DR}l\sb {1(i)}$-semigroups
%J Mathematica Bohemica
%D 1998
%P 437-441
%V 123
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125964/
%R 10.21136/MB.1998.125964
%G en
%F 10_21136_MB_1998_125964
Rachůnek, Jiří. MV-algebras are categorically equivalent to a class of $\scr{DR}l\sb {1(i)}$-semigroups. Mathematica Bohemica, Tome 123 (1998) no. 4, pp. 437-441. doi : 10.21136/MB.1998.125964. http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125964/

Cité par Sources :