Disjoint sequences in Boolean algebras
Mathematica Bohemica, Tome 123 (1998) no. 4, pp. 411-418.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We deal with the system ${\operatorname{Conv}} B$ of all sequential convergences on a Boolean algebra $B$. We prove that if $\alpha$ is a sequential convergence on $B$ which is generated by a set of disjoint sequences and if $\beta$ is any element of ${\operatorname{Conv}} B$, then the join $\alpha\vee\beta$ exists in the partially ordered set ${\operatorname{Conv}} B$. Further we show that each interval of ${\operatorname{Conv}} B$ is a Brouwerian lattice.
DOI : 10.21136/MB.1998.125963
Classification : 06A12, 06E05, 06E99, 11B99
Keywords: Boolean algebra; sequential convergence; disjoint sequence; Brouwerian lattice
@article{10_21136_MB_1998_125963,
     author = {Jakub{\'\i}k, J\'an},
     title = {Disjoint sequences in {Boolean} algebras},
     journal = {Mathematica Bohemica},
     pages = {411--418},
     publisher = {mathdoc},
     volume = {123},
     number = {4},
     year = {1998},
     doi = {10.21136/MB.1998.125963},
     mrnumber = {1667113},
     zbl = {0934.06017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125963/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Disjoint sequences in Boolean algebras
JO  - Mathematica Bohemica
PY  - 1998
SP  - 411
EP  - 418
VL  - 123
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125963/
DO  - 10.21136/MB.1998.125963
LA  - en
ID  - 10_21136_MB_1998_125963
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Disjoint sequences in Boolean algebras
%J Mathematica Bohemica
%D 1998
%P 411-418
%V 123
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125963/
%R 10.21136/MB.1998.125963
%G en
%F 10_21136_MB_1998_125963
Jakubík, Ján. Disjoint sequences in Boolean algebras. Mathematica Bohemica, Tome 123 (1998) no. 4, pp. 411-418. doi : 10.21136/MB.1998.125963. http://geodesic.mathdoc.fr/articles/10.21136/MB.1998.125963/

Cité par Sources :