$\Sigma$-Hamiltonian and $\Sigma$-regular algebraic structures
Mathematica Bohemica, Tome 121 (1996) no. 2, pp. 177-182.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The concept of a $\SS$-closed subset was introduced in [1] for an algebraic structure $\A=(A,F,R)$ of type $\t$ and a set $\SS$ of open formulas of the first order language $L(\t)$. The set $C_\SS(\A)$ of all $\SS$-closed subsets of $\A$ forms a complete lattice whose properties were investigated in [1] and [2]. An algebraic structure $\A$ is called $\SS$- hamiltonian, if every non-empty $\SS$-closed subset of $\A$ is a class (block) of some congruence on $\A$; $\A$ is called $\SS$- regular, if $\0=\F$ for every two $\0$, $\F\in\Con\A$ whenever they have a congruence class $B\in C_\SS(\A)$ in common. This paper contains some results connected with $\SS$-regularity and $\SS$-hamiltonian property of algebraic structures.
DOI : 10.21136/MB.1996.126108
Classification : 03E20, 04A05, 08A05, 08A30
Keywords: closure system; algebraic structure; $\SS$-closed subset; $\SS$-hamiltonian and $\SS$-regular algebraic structure; $\SS$-transferable congruence
@article{10_21136_MB_1996_126108,
     author = {Chajda, Ivan and Emanovsk\'y, Petr},
     title = {$\Sigma${-Hamiltonian} and $\Sigma$-regular algebraic structures},
     journal = {Mathematica Bohemica},
     pages = {177--182},
     publisher = {mathdoc},
     volume = {121},
     number = {2},
     year = {1996},
     doi = {10.21136/MB.1996.126108},
     mrnumber = {1400610},
     zbl = {0863.08001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126108/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Emanovský, Petr
TI  - $\Sigma$-Hamiltonian and $\Sigma$-regular algebraic structures
JO  - Mathematica Bohemica
PY  - 1996
SP  - 177
EP  - 182
VL  - 121
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126108/
DO  - 10.21136/MB.1996.126108
LA  - en
ID  - 10_21136_MB_1996_126108
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Emanovský, Petr
%T $\Sigma$-Hamiltonian and $\Sigma$-regular algebraic structures
%J Mathematica Bohemica
%D 1996
%P 177-182
%V 121
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126108/
%R 10.21136/MB.1996.126108
%G en
%F 10_21136_MB_1996_126108
Chajda, Ivan; Emanovský, Petr. $\Sigma$-Hamiltonian and $\Sigma$-regular algebraic structures. Mathematica Bohemica, Tome 121 (1996) no. 2, pp. 177-182. doi : 10.21136/MB.1996.126108. http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126108/

Cité par Sources :