A method for determining constants in the linear combination of exponentials
Mathematica Bohemica, Tome 121 (1996) no. 2, pp. 121-122.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Shifting a numerically given function $b_1 \exp a_1t + \dots+ b_n \exp a_n t$ we obtain a fundamental matrix of the linear differential system $\dot{y} =Ay$ with a constant matrix $A$. Using the fundamental matrix we calculate $A$, calculating the eigenvalues of $A$ we obtain $a_1, \dots, a_n$ and using the least square method we determine $b_1, \dots, b_n$.
DOI : 10.21136/MB.1996.126106
Classification : 34A30, 65D15, 65D20, 65F15, 65L99
Keywords: fundamental matrix; eigenvalues; linear system of ordinary differential equations; linear differential system; shifted exponentials; the least square method
@article{10_21136_MB_1996_126106,
     author = {Cerha, J.},
     title = {A method for determining constants in the linear combination of exponentials},
     journal = {Mathematica Bohemica},
     pages = {121--122},
     publisher = {mathdoc},
     volume = {121},
     number = {2},
     year = {1996},
     doi = {10.21136/MB.1996.126106},
     mrnumber = {1400603},
     zbl = {0863.65003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126106/}
}
TY  - JOUR
AU  - Cerha, J.
TI  - A method for determining constants in the linear combination of exponentials
JO  - Mathematica Bohemica
PY  - 1996
SP  - 121
EP  - 122
VL  - 121
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126106/
DO  - 10.21136/MB.1996.126106
LA  - en
ID  - 10_21136_MB_1996_126106
ER  - 
%0 Journal Article
%A Cerha, J.
%T A method for determining constants in the linear combination of exponentials
%J Mathematica Bohemica
%D 1996
%P 121-122
%V 121
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126106/
%R 10.21136/MB.1996.126106
%G en
%F 10_21136_MB_1996_126106
Cerha, J. A method for determining constants in the linear combination of exponentials. Mathematica Bohemica, Tome 121 (1996) no. 2, pp. 121-122. doi : 10.21136/MB.1996.126106. http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126106/

Cité par Sources :