On the matrices of central linear mappings
Mathematica Bohemica, Tome 121 (1996) no. 2, pp. 151-156.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that a central linear mapping of a projectively embedded Euclidean $n$-space onto a projectively embedded Euclidean $m$-space is decomposable into a central projection followed by a similarity if, and only if, the least singular value of a certain matrix has multiplicity $\ge2m-n+1$. This matrix is arising, by a simple manipulation, from a matrix describing the given mapping in terms of homogeneous Cartesian coordinates.
DOI : 10.21136/MB.1996.126103
Classification : 15A18, 51N05, 51N15, 51N20, 68U05
Keywords: linear mapping; axonometry; singular values
@article{10_21136_MB_1996_126103,
     author = {Havlicek, Hans},
     title = {On the matrices of central linear mappings},
     journal = {Mathematica Bohemica},
     pages = {151--156},
     publisher = {mathdoc},
     volume = {121},
     number = {2},
     year = {1996},
     doi = {10.21136/MB.1996.126103},
     mrnumber = {1400607},
     zbl = {0863.51020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126103/}
}
TY  - JOUR
AU  - Havlicek, Hans
TI  - On the matrices of central linear mappings
JO  - Mathematica Bohemica
PY  - 1996
SP  - 151
EP  - 156
VL  - 121
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126103/
DO  - 10.21136/MB.1996.126103
LA  - en
ID  - 10_21136_MB_1996_126103
ER  - 
%0 Journal Article
%A Havlicek, Hans
%T On the matrices of central linear mappings
%J Mathematica Bohemica
%D 1996
%P 151-156
%V 121
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126103/
%R 10.21136/MB.1996.126103
%G en
%F 10_21136_MB_1996_126103
Havlicek, Hans. On the matrices of central linear mappings. Mathematica Bohemica, Tome 121 (1996) no. 2, pp. 151-156. doi : 10.21136/MB.1996.126103. http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126103/

Cité par Sources :