$\alpha$-continuous and $\alpha$-irresolute multifunctions
Mathematica Bohemica, Tome 121 (1996) no. 4, pp. 415-424.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Recently Popa and Noiri [10] established some new characterizations and basic properties of $\alpha$-continuous multifunctions. In this paper, we improve some of their results and examine further properties of $\alpha$-continuous and $\alpha$-irresolute multifunctions. We also make corrections to some theorems of Neubrunn [7].
DOI : 10.21136/MB.1996.126038
Classification : 54C60, 54E55
Keywords: upper (lower) $\alpha$-continuous; upper (lower) $\alpha$-irresolute; strongly $\alpha$-closed graph; almost compact; almost paracompact
@article{10_21136_MB_1996_126038,
     author = {Cao, Jiling and Reilly, Ivan L.},
     title = {$\alpha$-continuous and $\alpha$-irresolute multifunctions},
     journal = {Mathematica Bohemica},
     pages = {415--424},
     publisher = {mathdoc},
     volume = {121},
     number = {4},
     year = {1996},
     doi = {10.21136/MB.1996.126038},
     mrnumber = {1428143},
     zbl = {0879.54020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126038/}
}
TY  - JOUR
AU  - Cao, Jiling
AU  - Reilly, Ivan L.
TI  - $\alpha$-continuous and $\alpha$-irresolute multifunctions
JO  - Mathematica Bohemica
PY  - 1996
SP  - 415
EP  - 424
VL  - 121
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126038/
DO  - 10.21136/MB.1996.126038
LA  - en
ID  - 10_21136_MB_1996_126038
ER  - 
%0 Journal Article
%A Cao, Jiling
%A Reilly, Ivan L.
%T $\alpha$-continuous and $\alpha$-irresolute multifunctions
%J Mathematica Bohemica
%D 1996
%P 415-424
%V 121
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126038/
%R 10.21136/MB.1996.126038
%G en
%F 10_21136_MB_1996_126038
Cao, Jiling; Reilly, Ivan L. $\alpha$-continuous and $\alpha$-irresolute multifunctions. Mathematica Bohemica, Tome 121 (1996) no. 4, pp. 415-424. doi : 10.21136/MB.1996.126038. http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.126038/

Cité par Sources :