Note on functions satisfying the integral Hölder condition
Mathematica Bohemica, Tome 121 (1996) no. 3, pp. 263-268.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given a modulus of continuity $\omega$ and $q \in[1, \infty[ $ then $H_q^\omega$ denotes the space of all functions $f$ with the period $1$ on $\R$ that are locally integrable in power $q$ and whose integral modulus of continuity of power $q$ (see(1)) is majorized by a multiple of $ \omega$. The moduli of continuity $ \omega$ are characterized for which $H_q^\omega$ contains "many" functions with infinite "essential" variation on an interval of length $1$.
DOI : 10.21136/MB.1996.125989
Classification : 26A15, 26A16, 26A45
Keywords: integral modulus of continuity; variation of a function
@article{10_21136_MB_1996_125989,
     author = {Kr\'al, Josef, Jr.},
     title = {Note on functions satisfying the integral {H\"older} condition},
     journal = {Mathematica Bohemica},
     pages = {263--268},
     publisher = {mathdoc},
     volume = {121},
     number = {3},
     year = {1996},
     doi = {10.21136/MB.1996.125989},
     mrnumber = {1419879},
     zbl = {0863.26006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125989/}
}
TY  - JOUR
AU  - Král, Josef, Jr.
TI  - Note on functions satisfying the integral Hölder condition
JO  - Mathematica Bohemica
PY  - 1996
SP  - 263
EP  - 268
VL  - 121
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125989/
DO  - 10.21136/MB.1996.125989
LA  - en
ID  - 10_21136_MB_1996_125989
ER  - 
%0 Journal Article
%A Král, Josef, Jr.
%T Note on functions satisfying the integral Hölder condition
%J Mathematica Bohemica
%D 1996
%P 263-268
%V 121
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125989/
%R 10.21136/MB.1996.125989
%G en
%F 10_21136_MB_1996_125989
Král, Josef, Jr. Note on functions satisfying the integral Hölder condition. Mathematica Bohemica, Tome 121 (1996) no. 3, pp. 263-268. doi : 10.21136/MB.1996.125989. http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125989/

Cité par Sources :