On solvability of nonlinear operator equations and eigenvalues of homogeneous operators
Mathematica Bohemica, Tome 121 (1996) no. 3, pp. 301-314.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Notions as the numerical range $W(S,T)$ and the spectrum $\s(S,T)$ of couple $(S,T)$ of homogeneous operators on a Banach space are used to derive theorems on solvability of the equation $Sx-lTx=y.$ Conditions for the existence of eigenvalues of the couple $(S,T)$ are given.
DOI : 10.21136/MB.1996.125984
Classification : 47H15, 47J05
Keywords: Banach and Hilbert space; homogeneous operator; polynomial operator; symmetric operator; monotone operator; numerical range; spectrum; eigenvalue
@article{10_21136_MB_1996_125984,
     author = {Bur\'y\v{s}kov\'a, V\v{e}ra and Bur\'y\v{s}ek, Slavom{\'\i}r},
     title = {On solvability of nonlinear operator equations and eigenvalues of homogeneous operators},
     journal = {Mathematica Bohemica},
     pages = {301--314},
     publisher = {mathdoc},
     volume = {121},
     number = {3},
     year = {1996},
     doi = {10.21136/MB.1996.125984},
     mrnumber = {1419884},
     zbl = {0863.47045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125984/}
}
TY  - JOUR
AU  - Burýšková, Věra
AU  - Burýšek, Slavomír
TI  - On solvability of nonlinear operator equations and eigenvalues of homogeneous operators
JO  - Mathematica Bohemica
PY  - 1996
SP  - 301
EP  - 314
VL  - 121
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125984/
DO  - 10.21136/MB.1996.125984
LA  - en
ID  - 10_21136_MB_1996_125984
ER  - 
%0 Journal Article
%A Burýšková, Věra
%A Burýšek, Slavomír
%T On solvability of nonlinear operator equations and eigenvalues of homogeneous operators
%J Mathematica Bohemica
%D 1996
%P 301-314
%V 121
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125984/
%R 10.21136/MB.1996.125984
%G en
%F 10_21136_MB_1996_125984
Burýšková, Věra; Burýšek, Slavomír. On solvability of nonlinear operator equations and eigenvalues of homogeneous operators. Mathematica Bohemica, Tome 121 (1996) no. 3, pp. 301-314. doi : 10.21136/MB.1996.125984. http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125984/

Cité par Sources :