Exact solutions of Cauchy problem for partial differential equations with double characteristics and singular coefficients
Mathematica Bohemica, Tome 121 (1996) no. 1, pp. 9-24.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $ L_{a, b}\eq(\pa_x-ax^k\pa_t)(\pa_x-bx^k\pa_t)+kbx^{k-1}\pa_t -kx\pa_x $ be a family of operators with double characteristics and singular coefficients, where $a$, $b$ are reals with $ab\ne0$ and $a\ne b$, $k>0$ is an odd integer. Let $\ome$ be the first quadrant in the plane and $H_+$ the upper half-plane. Consider Cauchy problems \cases{L_{a,b}u=0 in $\ome or H_+$, \cr u(x, 0)=\vp_0(x), u_t(x, 0)=\vp_1(x) \quad for $x \in\ov{{{\Bbb R}}_+} or x \in{{\Bbb R}}$ \cr} \eqno(P_1) for $a>0$, $b>0$, and initial-boundary value problems \cases{L_{a, b}u=0 in $\ome or H_+$, \cr u(x, 0)=\vp_0(x), u_t(x, 0)=\vp_1(x) \quad for $x \in{\ov{{{\Bbb R}}_+}} or x\in{{\Bbb R}}$, \cr u(0, t)=\psi_0(t) for $t\in\ov{{{\Bbb R}}_+}$,\cr} \eqno(P_2) \cases{L_{a, b}u=0 in $\ome or H_+$, \cr u(x, 0)=\vp_0(x), u_t(x, 0)=\vp_1(x) \quad for $x \in{\ov{{{\Bbb R}}_+}} or x \in{{\Bbb R}}$, \cr\displaystyle\lim_{{(x, \tau) \to(0, t), x \ne0} \atop{(x, \tau)\in\ome or H_+}} \d{u_x(x, \tau)}{x^k}=\psi_1(t) for $t \in\ov{{{\Bbb R}}_+}$ \cr} \eqno(P_3) for $ab0$ and \cases{L_{a, b}u=0 in $\ome or H_+$, \cr u(x, 0)=\vp_0(x), u_t(x, 0)=\vp_1(x) \quad for $x \in{\ov{{{\Bbb R}}_+}} or x\in{{\Bbb R}}$, \cr u(0, t)=\psi_0(t), \displaystyle\lim_{{(x, \tau)\to(0, t), x \ne0} \atop{(x, \tau)\in\ome or H_+}}\d{u_x(x, \tau)}{x^k} \! \! \! = $\psi_1(t) \quad for t \in\ov{{{\Bbb R}}_+}$ \cr} \eqno(P_4) for $a0$, $ b0$. Under appropriate smoothness conditions on $\vp_0$, $ \vp_1$, $ \psi_0$ and $\psi_1$, we obtain different sufficient and necessary conditions for each problem to have classical solutions. Moreover, we obtain also explicit expressions of solutions in each case.
DOI : 10.21136/MB.1996.125949
Classification : 35A05, 35C15, 35C99, 35L99
Keywords: exact solutions; Cauchy problem; singular coefficients; double characteristics
@article{10_21136_MB_1996_125949,
     author = {Lu, Zhu-Jia},
     title = {Exact solutions of {Cauchy} problem for partial differential equations with double characteristics and singular coefficients},
     journal = {Mathematica Bohemica},
     pages = {9--24},
     publisher = {mathdoc},
     volume = {121},
     number = {1},
     year = {1996},
     doi = {10.21136/MB.1996.125949},
     mrnumber = {1388169},
     zbl = {0863.35025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125949/}
}
TY  - JOUR
AU  - Lu, Zhu-Jia
TI  - Exact solutions of Cauchy problem for partial differential equations with double characteristics and singular coefficients
JO  - Mathematica Bohemica
PY  - 1996
SP  - 9
EP  - 24
VL  - 121
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125949/
DO  - 10.21136/MB.1996.125949
LA  - en
ID  - 10_21136_MB_1996_125949
ER  - 
%0 Journal Article
%A Lu, Zhu-Jia
%T Exact solutions of Cauchy problem for partial differential equations with double characteristics and singular coefficients
%J Mathematica Bohemica
%D 1996
%P 9-24
%V 121
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125949/
%R 10.21136/MB.1996.125949
%G en
%F 10_21136_MB_1996_125949
Lu, Zhu-Jia. Exact solutions of Cauchy problem for partial differential equations with double characteristics and singular coefficients. Mathematica Bohemica, Tome 121 (1996) no. 1, pp. 9-24. doi : 10.21136/MB.1996.125949. http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125949/

Cité par Sources :