The best Diophantine approximation functions by continued fractions
Mathematica Bohemica, Tome 121 (1996) no. 1, pp. 89-94.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\xi=[a_0;a_1,a_2,\dots,a_i,\dots]$ be an irrational number in simple continued fraction expansion, $p_i/q_i=[a_0;a_1,a_2,\dots,a_i]$, $M_i=q_i^2 |\xi-p_i/q_i|$. In this note we find a function $G(R,r)$ such that \align{n+1}\text{ and }M_{n-1}\text{ imply }M_n>G(R,r), {n+1}>R\text{ and }M_{n-1}>r\text{ imply }M_n(R,r). \endalign Together with a result the author obtained, this shows that to find two best approximation functions $\tilde H(R,r)$ and $\tilde L(R,r)$ is a well-posed problem. This problem has not been solved yet.
DOI : 10.21136/MB.1996.125943
Classification : 11A55, 11J04, 11J70
Keywords: best diophantine approximation; continued fraction; diophantine approximation
@article{10_21136_MB_1996_125943,
     author = {Tong, Jingcheng},
     title = {The best {Diophantine} approximation functions by continued fractions},
     journal = {Mathematica Bohemica},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {121},
     number = {1},
     year = {1996},
     doi = {10.21136/MB.1996.125943},
     mrnumber = {1388180},
     zbl = {0863.11042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125943/}
}
TY  - JOUR
AU  - Tong, Jingcheng
TI  - The best Diophantine approximation functions by continued fractions
JO  - Mathematica Bohemica
PY  - 1996
SP  - 89
EP  - 94
VL  - 121
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125943/
DO  - 10.21136/MB.1996.125943
LA  - en
ID  - 10_21136_MB_1996_125943
ER  - 
%0 Journal Article
%A Tong, Jingcheng
%T The best Diophantine approximation functions by continued fractions
%J Mathematica Bohemica
%D 1996
%P 89-94
%V 121
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125943/
%R 10.21136/MB.1996.125943
%G en
%F 10_21136_MB_1996_125943
Tong, Jingcheng. The best Diophantine approximation functions by continued fractions. Mathematica Bohemica, Tome 121 (1996) no. 1, pp. 89-94. doi : 10.21136/MB.1996.125943. http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125943/

Cité par Sources :