On $2$-extendability of generalized Petersen graphs
Mathematica Bohemica, Tome 121 (1996) no. 1, pp. 77-81.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $GP(n,k)$ be a generalized Petersen graph with $(n,k)=1$, $ n>k\geq4.$ Then every pair of parallel edges of $GP(n,k)$ is contained in a 1-factor of $GP(n,k)$. This partially answers a question posed by Larry Cammack and Gerald Schrag [Problem 101, Discrete Math. 73(3), 1989, 311-312].
DOI : 10.21136/MB.1996.125939
Classification : 05C70
Keywords: generalized Petersen graph; 2-extendable; one factor
@article{10_21136_MB_1996_125939,
     author = {Limaye, N. B. and Rao, Mulupuri Shanthi C.},
     title = {On $2$-extendability of generalized {Petersen} graphs},
     journal = {Mathematica Bohemica},
     pages = {77--81},
     publisher = {mathdoc},
     volume = {121},
     number = {1},
     year = {1996},
     doi = {10.21136/MB.1996.125939},
     mrnumber = {1388178},
     zbl = {0863.05063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125939/}
}
TY  - JOUR
AU  - Limaye, N. B.
AU  - Rao, Mulupuri Shanthi C.
TI  - On $2$-extendability of generalized Petersen graphs
JO  - Mathematica Bohemica
PY  - 1996
SP  - 77
EP  - 81
VL  - 121
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125939/
DO  - 10.21136/MB.1996.125939
LA  - en
ID  - 10_21136_MB_1996_125939
ER  - 
%0 Journal Article
%A Limaye, N. B.
%A Rao, Mulupuri Shanthi C.
%T On $2$-extendability of generalized Petersen graphs
%J Mathematica Bohemica
%D 1996
%P 77-81
%V 121
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125939/
%R 10.21136/MB.1996.125939
%G en
%F 10_21136_MB_1996_125939
Limaye, N. B.; Rao, Mulupuri Shanthi C. On $2$-extendability of generalized Petersen graphs. Mathematica Bohemica, Tome 121 (1996) no. 1, pp. 77-81. doi : 10.21136/MB.1996.125939. http://geodesic.mathdoc.fr/articles/10.21136/MB.1996.125939/

Cité par Sources :