Exact $2$-step domination in graphs
Mathematica Bohemica, Tome 120 (1995) no. 2, pp. 125-134.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a vertex $v$ in a graph $G$, the set $N_2(v)$ consists of those vertices of $G$ whose distance from $v$ is 2. If a graph $G$ contains a set $S$ of vertices such that the sets $N_2(v)$, $v\in S$, form a partition of $V(G)$, then $G$ is called a $2$-step domination graph. We describe $2$-step domination graphs possessing some prescribed property. In addition, all $2$-step domination paths and cycles are determined.
DOI : 10.21136/MB.1995.126228
Classification : 05C12, 05C38, 05C70
Keywords: $2$-step domination graph; paths; cycles
@article{10_21136_MB_1995_126228,
     author = {Chartrand, Gary and Harary, Frank and Hossain, Moazzem and Schultz, Kelly},
     title = {Exact $2$-step domination in graphs},
     journal = {Mathematica Bohemica},
     pages = {125--134},
     publisher = {mathdoc},
     volume = {120},
     number = {2},
     year = {1995},
     doi = {10.21136/MB.1995.126228},
     mrnumber = {1357597},
     zbl = {0863.05050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126228/}
}
TY  - JOUR
AU  - Chartrand, Gary
AU  - Harary, Frank
AU  - Hossain, Moazzem
AU  - Schultz, Kelly
TI  - Exact $2$-step domination in graphs
JO  - Mathematica Bohemica
PY  - 1995
SP  - 125
EP  - 134
VL  - 120
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126228/
DO  - 10.21136/MB.1995.126228
LA  - en
ID  - 10_21136_MB_1995_126228
ER  - 
%0 Journal Article
%A Chartrand, Gary
%A Harary, Frank
%A Hossain, Moazzem
%A Schultz, Kelly
%T Exact $2$-step domination in graphs
%J Mathematica Bohemica
%D 1995
%P 125-134
%V 120
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126228/
%R 10.21136/MB.1995.126228
%G en
%F 10_21136_MB_1995_126228
Chartrand, Gary; Harary, Frank; Hossain, Moazzem; Schultz, Kelly. Exact $2$-step domination in graphs. Mathematica Bohemica, Tome 120 (1995) no. 2, pp. 125-134. doi : 10.21136/MB.1995.126228. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126228/

Cité par Sources :