The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems
Mathematica Bohemica, Tome 120 (1995) no. 2, pp. 169-195.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem \align-\operatorname{div}(a(x,u)|\nablau|^{p-2}\nabla u) = \lambda b(x,u)|u|^{p-2}u \quad\text{ in } \Omega, u = 0 \hskip2cm\text{ on } \partial\Omega, \endalign where $\Omega$ is a bounded domain, $p>1$ is a real number and $a(x,u)$, $b(x,u)$ satisfy appropriate growth conditions. Moreover, the coefficient $a(x,u)$ contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in $L^\infty(\Omega)$. The main tool is the investigation of the associated homogeneous eigenvalue problem and an application of the Schauder fixed point theorem.
DOI : 10.21136/MB.1995.126227
Classification : 35B35, 35B45, 35J20, 35J65, 35J70, 35P30, 47H12, 47N20
Keywords: boundedness of eigenfunction; weighted Sobolev space; Schauder fixed point theorem; degenerated quasilinear partial differential equations; weak solutions; eigenvalue problems; boundedness of the solution
@article{10_21136_MB_1995_126227,
     author = {Dr\'abek, Pavel},
     title = {The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems},
     journal = {Mathematica Bohemica},
     pages = {169--195},
     publisher = {mathdoc},
     volume = {120},
     number = {2},
     year = {1995},
     doi = {10.21136/MB.1995.126227},
     mrnumber = {1357600},
     zbl = {0839.35049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126227/}
}
TY  - JOUR
AU  - Drábek, Pavel
TI  - The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems
JO  - Mathematica Bohemica
PY  - 1995
SP  - 169
EP  - 195
VL  - 120
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126227/
DO  - 10.21136/MB.1995.126227
LA  - en
ID  - 10_21136_MB_1995_126227
ER  - 
%0 Journal Article
%A Drábek, Pavel
%T The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems
%J Mathematica Bohemica
%D 1995
%P 169-195
%V 120
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126227/
%R 10.21136/MB.1995.126227
%G en
%F 10_21136_MB_1995_126227
Drábek, Pavel. The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems. Mathematica Bohemica, Tome 120 (1995) no. 2, pp. 169-195. doi : 10.21136/MB.1995.126227. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126227/

Cité par Sources :