On an extremal problem
Mathematica Bohemica, Tome 120 (1995) no. 2, pp. 113-124.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $S$ denote the class of functions $f(z) = z + a_2z^2 + a_3z^3 + \ldots$ univalent and holomorphic in the unit disc $\varDelta= \{z |z| 1\}$. In the paper we obtain a sharp estimate of the functional $|a_3 - \alpha a^2_2| + \alpha|a_2|^2$ in the class $S$ for an arbitrary $\alpha\in\Bbb R$.
DOI : 10.21136/MB.1995.126223
Classification : 30C50, 30C70
Keywords: coefficient problems; Koebe function; univalent function
@article{10_21136_MB_1995_126223,
     author = {Zyskowska, Krystyna},
     title = {On an extremal problem},
     journal = {Mathematica Bohemica},
     pages = {113--124},
     publisher = {mathdoc},
     volume = {120},
     number = {2},
     year = {1995},
     doi = {10.21136/MB.1995.126223},
     mrnumber = {1357596},
     zbl = {0857.30016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126223/}
}
TY  - JOUR
AU  - Zyskowska, Krystyna
TI  - On an extremal problem
JO  - Mathematica Bohemica
PY  - 1995
SP  - 113
EP  - 124
VL  - 120
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126223/
DO  - 10.21136/MB.1995.126223
LA  - en
ID  - 10_21136_MB_1995_126223
ER  - 
%0 Journal Article
%A Zyskowska, Krystyna
%T On an extremal problem
%J Mathematica Bohemica
%D 1995
%P 113-124
%V 120
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126223/
%R 10.21136/MB.1995.126223
%G en
%F 10_21136_MB_1995_126223
Zyskowska, Krystyna. On an extremal problem. Mathematica Bohemica, Tome 120 (1995) no. 2, pp. 113-124. doi : 10.21136/MB.1995.126223. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126223/

Cité par Sources :