On torsion of a $3$-web
Mathematica Bohemica, Tome 120 (1995) no. 4, pp. 387-392.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A 3-web on a smooth $2n$-dimensional manifold can be regarded locally as a triple of integrable $n$-distributions which are pairwise complementary, [5]; that is, we can work on the tangent bundle only. This approach enables us to describe a $3$-web and its properties by invariant $(1,1)$-tensor fields $P$ and $B$ where $P$ is a projector and $B^2=$ id. The canonical Chern connection of a web-manifold can be introduced using this tensor fields, [1]. Our aim is to express the torsion tensor $T$ of the Chern connection through the Nijenhuis $(1,2)$-tensor field $[P,B]$, and to verify that $[P,B]=0$ is a necessary and sufficient conditions for vanishing of the torsion $T$.
DOI : 10.21136/MB.1995.126095
Classification : 53A60, 53C05
Keywords: three-web; torsion tensor of a web; distribution; projector; manifold; connection; web
@article{10_21136_MB_1995_126095,
     author = {Van\v{z}urov\'a, Alena},
     title = {On torsion of a $3$-web},
     journal = {Mathematica Bohemica},
     pages = {387--392},
     publisher = {mathdoc},
     volume = {120},
     number = {4},
     year = {1995},
     doi = {10.21136/MB.1995.126095},
     mrnumber = {1415086},
     zbl = {0851.53006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126095/}
}
TY  - JOUR
AU  - Vanžurová, Alena
TI  - On torsion of a $3$-web
JO  - Mathematica Bohemica
PY  - 1995
SP  - 387
EP  - 392
VL  - 120
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126095/
DO  - 10.21136/MB.1995.126095
LA  - en
ID  - 10_21136_MB_1995_126095
ER  - 
%0 Journal Article
%A Vanžurová, Alena
%T On torsion of a $3$-web
%J Mathematica Bohemica
%D 1995
%P 387-392
%V 120
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126095/
%R 10.21136/MB.1995.126095
%G en
%F 10_21136_MB_1995_126095
Vanžurová, Alena. On torsion of a $3$-web. Mathematica Bohemica, Tome 120 (1995) no. 4, pp. 387-392. doi : 10.21136/MB.1995.126095. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126095/

Cité par Sources :