A principle of linearization in theory of stability of solutions of variational inequalities
Mathematica Bohemica, Tome 120 (1995) no. 4, pp. 337-345.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that the uniform exponential stability and the uniform stability at permanently acting disturbances of a sufficiently smooth but not necessarily steady-state solution of a general variational inequality is a consequence of the uniform exponential stability of a zero solution of another (so called linearized) variational inequality.
DOI : 10.21136/MB.1995.126091
Classification : 34D05, 34G20, 34G99, 47H19, 47J20, 47N20, 49J40, 58E35
Keywords: linearization; stability; variational inequality
@article{10_21136_MB_1995_126091,
     author = {Neustupa, Ji\v{r}{\'\i}},
     title = {A principle of linearization in theory of stability of solutions of variational inequalities},
     journal = {Mathematica Bohemica},
     pages = {337--345},
     publisher = {mathdoc},
     volume = {120},
     number = {4},
     year = {1995},
     doi = {10.21136/MB.1995.126091},
     mrnumber = {1415082},
     zbl = {0847.34057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126091/}
}
TY  - JOUR
AU  - Neustupa, Jiří
TI  - A principle of linearization in theory of stability of solutions of variational inequalities
JO  - Mathematica Bohemica
PY  - 1995
SP  - 337
EP  - 345
VL  - 120
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126091/
DO  - 10.21136/MB.1995.126091
LA  - en
ID  - 10_21136_MB_1995_126091
ER  - 
%0 Journal Article
%A Neustupa, Jiří
%T A principle of linearization in theory of stability of solutions of variational inequalities
%J Mathematica Bohemica
%D 1995
%P 337-345
%V 120
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126091/
%R 10.21136/MB.1995.126091
%G en
%F 10_21136_MB_1995_126091
Neustupa, Jiří. A principle of linearization in theory of stability of solutions of variational inequalities. Mathematica Bohemica, Tome 120 (1995) no. 4, pp. 337-345. doi : 10.21136/MB.1995.126091. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126091/

Cité par Sources :