Relaxation of vectorial variational problems
Mathematica Bohemica, Tome 120 (1995) no. 4, pp. 411-430.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Multidimensional vectorial non-quasiconvex variational problems are relaxed by means of a generalized-Young-functional technique. Selective first-order optimality conditions, having the form of an Euler-Weiestrass condition involving minors, are formulated in a special, rather a model case when the potential has a polyconvex quasiconvexification.
DOI : 10.21136/MB.1995.126087
Classification : 35D05, 46E35, 49J45, 49J99, 49K27, 49K99, 73V25, 74P10, 74S30, 90C29
Keywords: variational relaxation; abstract relaxed problem; first-order optimality conditions; Carathéodory integrands; quasiconvexified problem; Young measures; relaxed variational problems; minors of gradients; optimality conditions; Weierstrass-type maximum principle
@article{10_21136_MB_1995_126087,
     author = {Roub{\'\i}\v{c}ek, Tom\'a\v{s}},
     title = {Relaxation of vectorial variational problems},
     journal = {Mathematica Bohemica},
     pages = {411--430},
     publisher = {mathdoc},
     volume = {120},
     number = {4},
     year = {1995},
     doi = {10.21136/MB.1995.126087},
     mrnumber = {1415089},
     zbl = {0859.49013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126087/}
}
TY  - JOUR
AU  - Roubíček, Tomáš
TI  - Relaxation of vectorial variational problems
JO  - Mathematica Bohemica
PY  - 1995
SP  - 411
EP  - 430
VL  - 120
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126087/
DO  - 10.21136/MB.1995.126087
LA  - en
ID  - 10_21136_MB_1995_126087
ER  - 
%0 Journal Article
%A Roubíček, Tomáš
%T Relaxation of vectorial variational problems
%J Mathematica Bohemica
%D 1995
%P 411-430
%V 120
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126087/
%R 10.21136/MB.1995.126087
%G en
%F 10_21136_MB_1995_126087
Roubíček, Tomáš. Relaxation of vectorial variational problems. Mathematica Bohemica, Tome 120 (1995) no. 4, pp. 411-430. doi : 10.21136/MB.1995.126087. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126087/

Cité par Sources :