Approximate properties of principal solutions of Volterra-type integrodifferential equations with infinite aftereffect
Mathematica Bohemica, Tome 120 (1995) no. 3, pp. 265-282.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The integrodifferential system with aftereffect ("heredity" or "prehistory") dx/dt=Ax+\varepsilon\int_{-\infty}^t R(t,s)x(s,\varepsilon)ds, is considered; here $\varepsilon$ is a positive small parameter, $A$ is a constant $n\times n$ matrix, $R(t,s)$ is the kernel of this system exponentially decreasing in norm as $t\to\infty$. It is proved, if matrix $A$ and kernel $R(t,s)$ satisfy some restrictions and $\varepsilon$ does not exceed some bound $\varepsilon_\ast$, then the $n$-dimensional set of the so-called principal two-sided solutions $\tilde{x}(t,\varepsilon)$ approximates in asymptotic sense the infinite-dimensional set of solutions $x(t,\varepsilon)$ corresponding a sufficiently wide class of initial functions. For $t$ growing to infinity an estimate of the difference between $x(t,\varepsilon)$ and $\tilde{x}(t,\varepsilon)$ is obtained.
DOI : 10.21136/MB.1995.126010
Classification : 34K15, 34K25, 45D05, 45J05
Keywords: integrodifferential system with after-effect; principal two-sided solutions; integrodifferential equations; principal solutions; small parameter
@article{10_21136_MB_1995_126010,
     author = {Ryabov, Y. A.},
     title = {Approximate properties of principal solutions of {Volterra-type} integrodifferential equations with infinite aftereffect},
     journal = {Mathematica Bohemica},
     pages = {265--282},
     publisher = {mathdoc},
     volume = {120},
     number = {3},
     year = {1995},
     doi = {10.21136/MB.1995.126010},
     mrnumber = {1369685},
     zbl = {0847.34078},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126010/}
}
TY  - JOUR
AU  - Ryabov, Y. A.
TI  - Approximate properties of principal solutions of Volterra-type integrodifferential equations with infinite aftereffect
JO  - Mathematica Bohemica
PY  - 1995
SP  - 265
EP  - 282
VL  - 120
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126010/
DO  - 10.21136/MB.1995.126010
LA  - en
ID  - 10_21136_MB_1995_126010
ER  - 
%0 Journal Article
%A Ryabov, Y. A.
%T Approximate properties of principal solutions of Volterra-type integrodifferential equations with infinite aftereffect
%J Mathematica Bohemica
%D 1995
%P 265-282
%V 120
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126010/
%R 10.21136/MB.1995.126010
%G en
%F 10_21136_MB_1995_126010
Ryabov, Y. A. Approximate properties of principal solutions of Volterra-type integrodifferential equations with infinite aftereffect. Mathematica Bohemica, Tome 120 (1995) no. 3, pp. 265-282. doi : 10.21136/MB.1995.126010. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126010/

Cité par Sources :