Inertial law of quadratic forms on modules over plural algebra
Mathematica Bohemica, Tome 120 (1995) no. 3, pp. 255-263.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Quadratic forms on a free finite-dimensional module are investigated. It is shown that the inertial law can be suitably generalized provided the vector space is replaced by a free finite-dimensional module over a certain linear algebra over $\R$ ( real plural algebra) introduced in [1].
DOI : 10.21136/MB.1995.126009
Classification : 11E04, 11E08, 11E39, 15A63
Keywords: quadratic forms over a real plural algebra; plural signature; inertia theorem; free module; bilinear form; polar basis; linear algebra; quadratic form
@article{10_21136_MB_1995_126009,
     author = {Jukl, Marek},
     title = {Inertial law of quadratic forms on modules over plural algebra},
     journal = {Mathematica Bohemica},
     pages = {255--263},
     publisher = {mathdoc},
     volume = {120},
     number = {3},
     year = {1995},
     doi = {10.21136/MB.1995.126009},
     mrnumber = {1369684},
     zbl = {0867.11023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126009/}
}
TY  - JOUR
AU  - Jukl, Marek
TI  - Inertial law of quadratic forms on modules over plural algebra
JO  - Mathematica Bohemica
PY  - 1995
SP  - 255
EP  - 263
VL  - 120
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126009/
DO  - 10.21136/MB.1995.126009
LA  - en
ID  - 10_21136_MB_1995_126009
ER  - 
%0 Journal Article
%A Jukl, Marek
%T Inertial law of quadratic forms on modules over plural algebra
%J Mathematica Bohemica
%D 1995
%P 255-263
%V 120
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126009/
%R 10.21136/MB.1995.126009
%G en
%F 10_21136_MB_1995_126009
Jukl, Marek. Inertial law of quadratic forms on modules over plural algebra. Mathematica Bohemica, Tome 120 (1995) no. 3, pp. 255-263. doi : 10.21136/MB.1995.126009. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126009/

Cité par Sources :