Hamiltonian connectedness and a matching in powers of connected graphs
Mathematica Bohemica, Tome 120 (1995) no. 3, pp. 305-317.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper the following results are proved: 1. Let $P_n$ be a path with $n$ vertices, where $n \geq5$ and $n \not= 7,8$. Let $M$ be a matching in $P_n$. Then $(P_n)^4 - M$ is hamiltonian-connected. 2. Let $G$ be a connected graph of order $p \geq5$, and let $M$ be a matching in $G$. Then $G^5 - M$ is hamiltonian-connected.
DOI : 10.21136/MB.1995.126003
Classification : 05C12, 05C45, 05C70
Keywords: power; distance; matching; hamiltonian path; hamiltonian connected; power of a graph
@article{10_21136_MB_1995_126003,
     author = {Wisztov\'a, Elena},
     title = {Hamiltonian connectedness and a matching in powers of connected graphs},
     journal = {Mathematica Bohemica},
     pages = {305--317},
     publisher = {mathdoc},
     volume = {120},
     number = {3},
     year = {1995},
     doi = {10.21136/MB.1995.126003},
     mrnumber = {1369689},
     zbl = {0848.05047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126003/}
}
TY  - JOUR
AU  - Wisztová, Elena
TI  - Hamiltonian connectedness and a matching in powers of connected graphs
JO  - Mathematica Bohemica
PY  - 1995
SP  - 305
EP  - 317
VL  - 120
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126003/
DO  - 10.21136/MB.1995.126003
LA  - en
ID  - 10_21136_MB_1995_126003
ER  - 
%0 Journal Article
%A Wisztová, Elena
%T Hamiltonian connectedness and a matching in powers of connected graphs
%J Mathematica Bohemica
%D 1995
%P 305-317
%V 120
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126003/
%R 10.21136/MB.1995.126003
%G en
%F 10_21136_MB_1995_126003
Wisztová, Elena. Hamiltonian connectedness and a matching in powers of connected graphs. Mathematica Bohemica, Tome 120 (1995) no. 3, pp. 305-317. doi : 10.21136/MB.1995.126003. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126003/

Cité par Sources :