On $(j,k)$-symmetrical functions
Mathematica Bohemica, Tome 120 (1995) no. 1, pp. 13-28.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

n the present paper the authors study some families of functions from a complex linear space $X$ into a complex linear space $Y$. They introduce the notion of $(j,k)$-symmetrical function ($k=2,3,\dots$; $j=0,1,\dots,k-1$) which is a generalization of the notions of even, odd and $k$-symmetrical functions. They generalize the well know result that each function defined on a symmetrical subset $U$ of $X$ can be uniquely represented as the sum of an even function and an odd function.
DOI : 10.21136/MB.1995.125897
Classification : 26B40, 26E15, 30A10, 30A99, 32A99, 46G20
Keywords: $(j, k)$-symmetrical functions; holomorphic function; integral formulas; uniqueness theorem; mean value of a function; a variant of Schwarz lemma; fixed point; spectrum of an operator
@article{10_21136_MB_1995_125897,
     author = {Liczberski, Piotr and Po{\l}ubi\'nski, Jerzy},
     title = {On $(j,k)$-symmetrical functions},
     journal = {Mathematica Bohemica},
     pages = {13--28},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {1995},
     doi = {10.21136/MB.1995.125897},
     mrnumber = {1336943},
     zbl = {0838.30004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125897/}
}
TY  - JOUR
AU  - Liczberski, Piotr
AU  - Połubiński, Jerzy
TI  - On $(j,k)$-symmetrical functions
JO  - Mathematica Bohemica
PY  - 1995
SP  - 13
EP  - 28
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125897/
DO  - 10.21136/MB.1995.125897
LA  - en
ID  - 10_21136_MB_1995_125897
ER  - 
%0 Journal Article
%A Liczberski, Piotr
%A Połubiński, Jerzy
%T On $(j,k)$-symmetrical functions
%J Mathematica Bohemica
%D 1995
%P 13-28
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125897/
%R 10.21136/MB.1995.125897
%G en
%F 10_21136_MB_1995_125897
Liczberski, Piotr; Połubiński, Jerzy. On $(j,k)$-symmetrical functions. Mathematica Bohemica, Tome 120 (1995) no. 1, pp. 13-28. doi : 10.21136/MB.1995.125897. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125897/

Cité par Sources :