Laguerresche Differentialgeometrie und Kinematik
Mathematica Bohemica, Tome 120 (1995) no. 1, pp. 29-40.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper the plane Laguerre's geometry in the augmented plane of dual numbers is presented. Basic integral and differential invariants of $\cal L$-curves in the plane are deduced, i.e. the $\cal L$-curve arc, $\cal L$-curvature, $\cal L$-minimal curves, $\cal L$-circle. Furthermore the contact of $\cal L$-curves, $\cal L$-osculating circle, $\cal L$-evolute of a curve and some special $\cal L$-motions are studied from the point of view of $\cal L$-Differential geometry.
DOI : 10.21136/MB.1995.125894
Classification : 51B15, 53A17, 53A35, 53A40
Mots-clés : Laguerre geometry in the isotropic plane; differential geometric properties of curves; Laguerre geometries
@article{10_21136_MB_1995_125894,
     author = {Jankovsk\'y, Zden\v{e}k},
     title = {Laguerresche {Differentialgeometrie} und {Kinematik}},
     journal = {Mathematica Bohemica},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {1995},
     doi = {10.21136/MB.1995.125894},
     mrnumber = {1336944},
     zbl = {0840.53013},
     language = {ge},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125894/}
}
TY  - JOUR
AU  - Jankovský, Zdeněk
TI  - Laguerresche Differentialgeometrie und Kinematik
JO  - Mathematica Bohemica
PY  - 1995
SP  - 29
EP  - 40
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125894/
DO  - 10.21136/MB.1995.125894
LA  - ge
ID  - 10_21136_MB_1995_125894
ER  - 
%0 Journal Article
%A Jankovský, Zdeněk
%T Laguerresche Differentialgeometrie und Kinematik
%J Mathematica Bohemica
%D 1995
%P 29-40
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125894/
%R 10.21136/MB.1995.125894
%G ge
%F 10_21136_MB_1995_125894
Jankovský, Zdeněk. Laguerresche Differentialgeometrie und Kinematik. Mathematica Bohemica, Tome 120 (1995) no. 1, pp. 29-40. doi : 10.21136/MB.1995.125894. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125894/

Cité par Sources :