$\Sigma$-isomorphic algebraic structures
Mathematica Bohemica, Tome 120 (1995) no. 1, pp. 71-81.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For an algebraic structure $\A=(A,F,R)$ or type $\t$ and a set $\Sigma$ of open formulas of the first order language $L(\t)$ we introduce the concept of $\Sigma$-closed subsets of $\A$. The set $\C_\Sigma(\A)$ of all $\Sigma$-closed subsets forms a complete lattice. Algebraic structures $\A$, $\B$ of type $\t$ are called $\Sigma$-isomorphic if $\C_\Sigma(\A)\cong\C_\Sigma(\B)$. Examples of such $\Sigma$-closed subsets are e.g. subalgebras of an algebra, ideals of a ring, ideals of a lattice, convex subsets of an ordered or quasiordered set etc. We study $\Sigma$-isomorphic algebraic structures in dependence on the properties of $\Sigma$.
DOI : 10.21136/MB.1995.125890
Classification : 03C05, 04A05, 06B10, 08A05
Keywords: closure system; isomorphism; lattice of $\Sigma$-closed subsets; subalgebras; ideals; algebraic structure; $\Sigma$-closed subset; $\Sigma$-isomorphic structures
@article{10_21136_MB_1995_125890,
     author = {Chajda, Ivan and Emanovsk\'y, Petr},
     title = {$\Sigma$-isomorphic algebraic structures},
     journal = {Mathematica Bohemica},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {1995},
     doi = {10.21136/MB.1995.125890},
     mrnumber = {1336947},
     zbl = {0833.08001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125890/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Emanovský, Petr
TI  - $\Sigma$-isomorphic algebraic structures
JO  - Mathematica Bohemica
PY  - 1995
SP  - 71
EP  - 81
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125890/
DO  - 10.21136/MB.1995.125890
LA  - en
ID  - 10_21136_MB_1995_125890
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Emanovský, Petr
%T $\Sigma$-isomorphic algebraic structures
%J Mathematica Bohemica
%D 1995
%P 71-81
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125890/
%R 10.21136/MB.1995.125890
%G en
%F 10_21136_MB_1995_125890
Chajda, Ivan; Emanovský, Petr. $\Sigma$-isomorphic algebraic structures. Mathematica Bohemica, Tome 120 (1995) no. 1, pp. 71-81. doi : 10.21136/MB.1995.125890. http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125890/

Cité par Sources :