On some applications of harmonic measure in the geometric theory of analytic functions
Mathematica Bohemica, Tome 119 (1994) no. 1, pp. 57-74.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\Cal P$ denote the well-known class of functions of the form $p(z)=1+q_1z+\ldots$ holomorphic in the unit disc $\bold D$ and fulfilling the conditions $Rep(z)>0$ in $\bold D$. Let $0\leq b1, b$, be fixed real numbers and $zbold F$ a given measurable subset of the unit circle $\bold T$ of Lebesgue measure $2\pi\alpha$. For each $r \in (-\pi,\pi)$, denote by $\bold F_r=\{\xi\in \bold T; e^{-iT}\xi \in \bold F\}$ the set arising by rotation of $\bold F$ through the angle $\tau$. Denote by $\Cal P(B,b,\alpha;\bold F)$ the class of functions $p\in \Cal P$ satisfying the following conditions: there exists $\tau \in (-\pi,\pi)$ such that Rep(^{i\theta})\geq b$ a.e. on $\bold T\ \bold F_r$. In the paper the properties of the class $\Cal P(B,b,\alpha;\bold F)$ for different values of the parameters $B, b, \alpha$ and measurable sets $\bold F$ are examined. This article belongs to the series of papers ([4], [5], [6]) where different classes of functions defined by conditions on the circle $\bold T$ were studied. The results of papers [5], [6] are generalized.
DOI : 10.21136/MB.1994.126198
Classification : 30C45, 30C50, 30C85
Keywords: harmonic measure; Carathéodory functions; extreme points; support points; coefficient estimates
@article{10_21136_MB_1994_126198,
     author = {Fuka, Jaroslav and Jakubowski, Z. J.},
     title = {On some applications of harmonic measure in the geometric theory of analytic functions},
     journal = {Mathematica Bohemica},
     pages = {57--74},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {1994},
     doi = {10.21136/MB.1994.126198},
     mrnumber = {1303552},
     zbl = {0805.30010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126198/}
}
TY  - JOUR
AU  - Fuka, Jaroslav
AU  - Jakubowski, Z. J.
TI  - On some applications of harmonic measure in the geometric theory of analytic functions
JO  - Mathematica Bohemica
PY  - 1994
SP  - 57
EP  - 74
VL  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126198/
DO  - 10.21136/MB.1994.126198
LA  - en
ID  - 10_21136_MB_1994_126198
ER  - 
%0 Journal Article
%A Fuka, Jaroslav
%A Jakubowski, Z. J.
%T On some applications of harmonic measure in the geometric theory of analytic functions
%J Mathematica Bohemica
%D 1994
%P 57-74
%V 119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126198/
%R 10.21136/MB.1994.126198
%G en
%F 10_21136_MB_1994_126198
Fuka, Jaroslav; Jakubowski, Z. J. On some applications of harmonic measure in the geometric theory of analytic functions. Mathematica Bohemica, Tome 119 (1994) no. 1, pp. 57-74. doi : 10.21136/MB.1994.126198. http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126198/

Cité par Sources :