Trichotomy and bounded solutions of nonlinear differential equations
Mathematica Bohemica, Tome 119 (1994) no. 3, pp. 275-284.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The existence of bounded solutions for equations $x'=A(t)x+f(t,x)$ in Banach spaces is proved. We assume that the linear part is trichotomic and the perturbation $f$ satisfies some conditions expressed in terms of measures of noncompactness.
DOI : 10.21136/MB.1994.126161
Classification : 34C11, 34C28, 34G20, 47H15, 47N20
Keywords: existence; bounded solutions; quasilinear differential; trichotomy; measures of noncompactness; Banach spaces
@article{10_21136_MB_1994_126161,
     author = {Cicho\'n, Mieczys{\l}aw},
     title = {Trichotomy and bounded solutions of nonlinear differential equations},
     journal = {Mathematica Bohemica},
     pages = {275--284},
     publisher = {mathdoc},
     volume = {119},
     number = {3},
     year = {1994},
     doi = {10.21136/MB.1994.126161},
     mrnumber = {1305530},
     zbl = {0819.34040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126161/}
}
TY  - JOUR
AU  - Cichoń, Mieczysław
TI  - Trichotomy and bounded solutions of nonlinear differential equations
JO  - Mathematica Bohemica
PY  - 1994
SP  - 275
EP  - 284
VL  - 119
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126161/
DO  - 10.21136/MB.1994.126161
LA  - en
ID  - 10_21136_MB_1994_126161
ER  - 
%0 Journal Article
%A Cichoń, Mieczysław
%T Trichotomy and bounded solutions of nonlinear differential equations
%J Mathematica Bohemica
%D 1994
%P 275-284
%V 119
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126161/
%R 10.21136/MB.1994.126161
%G en
%F 10_21136_MB_1994_126161
Cichoń, Mieczysław. Trichotomy and bounded solutions of nonlinear differential equations. Mathematica Bohemica, Tome 119 (1994) no. 3, pp. 275-284. doi : 10.21136/MB.1994.126161. http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126161/

Cité par Sources :