The Hausdorff dimension of some special plane sets
Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 359-366.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A compact set $T\subset \bold R^2$ is constructed such that each horizontal or vertical line intersects $T$ in at most one point while the $\alpha$-dimensional measure of $T$ is infinite for every $\alpha \in (0,2)$.
DOI : 10.21136/MB.1994.126119
Classification : 28A05, 28A78
Keywords: Hausdorff dimension; compact plane set; Hausdorff measure
@article{10_21136_MB_1994_126119,
     author = {Ma\v{r}{\'\i}k, Jan},
     title = {The {Hausdorff} dimension of some special plane sets},
     journal = {Mathematica Bohemica},
     pages = {359--366},
     publisher = {mathdoc},
     volume = {119},
     number = {4},
     year = {1994},
     doi = {10.21136/MB.1994.126119},
     mrnumber = {1316587},
     zbl = {0813.28001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126119/}
}
TY  - JOUR
AU  - Mařík, Jan
TI  - The Hausdorff dimension of some special plane sets
JO  - Mathematica Bohemica
PY  - 1994
SP  - 359
EP  - 366
VL  - 119
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126119/
DO  - 10.21136/MB.1994.126119
LA  - en
ID  - 10_21136_MB_1994_126119
ER  - 
%0 Journal Article
%A Mařík, Jan
%T The Hausdorff dimension of some special plane sets
%J Mathematica Bohemica
%D 1994
%P 359-366
%V 119
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126119/
%R 10.21136/MB.1994.126119
%G en
%F 10_21136_MB_1994_126119
Mařík, Jan. The Hausdorff dimension of some special plane sets. Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 359-366. doi : 10.21136/MB.1994.126119. http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126119/

Cité par Sources :