Note on independent sets of a graph
Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 385-386.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let the number of $k$-element sets of independent vertices and edges of a graph $G$ be denoted by $n(G,k)$ and $m(G,k)$, respectively. It is shown that the graphs whose every component is a circuit are the only graphs for which the equality $n(G,k)=m(G,k)$ is satisfied for all values of $k$.
DOI : 10.21136/MB.1994.126117
Classification : 05C38, 05C75
Keywords: independent sets; circuit
@article{10_21136_MB_1994_126117,
     author = {Ivan\v{c}o, Jaroslav},
     title = {Note on independent sets of a graph},
     journal = {Mathematica Bohemica},
     pages = {385--386},
     publisher = {mathdoc},
     volume = {119},
     number = {4},
     year = {1994},
     doi = {10.21136/MB.1994.126117},
     mrnumber = {1316591},
     zbl = {0812.05053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126117/}
}
TY  - JOUR
AU  - Ivančo, Jaroslav
TI  - Note on independent sets of a graph
JO  - Mathematica Bohemica
PY  - 1994
SP  - 385
EP  - 386
VL  - 119
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126117/
DO  - 10.21136/MB.1994.126117
LA  - en
ID  - 10_21136_MB_1994_126117
ER  - 
%0 Journal Article
%A Ivančo, Jaroslav
%T Note on independent sets of a graph
%J Mathematica Bohemica
%D 1994
%P 385-386
%V 119
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126117/
%R 10.21136/MB.1994.126117
%G en
%F 10_21136_MB_1994_126117
Ivančo, Jaroslav. Note on independent sets of a graph. Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 385-386. doi : 10.21136/MB.1994.126117. http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126117/

Cité par Sources :