A note on factorization of the Fermat numbers and their factors of the form $3h2\sp n+1$
Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 437-445.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that any factorization of any composite Fermat number $F_m={2^{2}}^m+1$ into two nontrivial factors can be expressed in the form $F_m=(k2^n+1)(\ell2^n+1)$ for some odd $k$ and $\ell, k\geq 3, \ell \geq 3$, and integer $n\geq m+2, 3n2^m$. We prove that the greatest common divisor of $k$ and $\ell$ is 1, $k+\ell\equiv 0\ mod 2^n,\ max(k,\ell)\geq F_{m-2}$, and either $3|k$ or $3|\ell$, i.e., $3h2^{m+2}+1|F_m$ for an integer $h\geq 1$. Factorizations of $F_m$ into more than two factors are investigated as well. In particular, we prove that if $F_m=(k2^n+1)^2(\ell2^j+1)$ then $j=n+1,3|\ell$ and $5|\ell$.
DOI : 10.21136/MB.1994.126115
Classification : 11A51, 11Y05
Keywords: congruence properties; Fermat numbers; prime numbers; factorization; squarefreensess
@article{10_21136_MB_1994_126115,
     author = {K\v{r}{\'\i}\v{z}ek, Michal and Chleboun, Jan},
     title = {A note on factorization of the {Fermat} numbers and their factors of the form $3h2\sp n+1$},
     journal = {Mathematica Bohemica},
     pages = {437--445},
     publisher = {mathdoc},
     volume = {119},
     number = {4},
     year = {1994},
     doi = {10.21136/MB.1994.126115},
     mrnumber = {1316595},
     zbl = {0822.11007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126115/}
}
TY  - JOUR
AU  - Křížek, Michal
AU  - Chleboun, Jan
TI  - A note on factorization of the Fermat numbers and their factors of the form $3h2\sp n+1$
JO  - Mathematica Bohemica
PY  - 1994
SP  - 437
EP  - 445
VL  - 119
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126115/
DO  - 10.21136/MB.1994.126115
LA  - en
ID  - 10_21136_MB_1994_126115
ER  - 
%0 Journal Article
%A Křížek, Michal
%A Chleboun, Jan
%T A note on factorization of the Fermat numbers and their factors of the form $3h2\sp n+1$
%J Mathematica Bohemica
%D 1994
%P 437-445
%V 119
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126115/
%R 10.21136/MB.1994.126115
%G en
%F 10_21136_MB_1994_126115
Křížek, Michal; Chleboun, Jan. A note on factorization of the Fermat numbers and their factors of the form $3h2\sp n+1$. Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 437-445. doi : 10.21136/MB.1994.126115. http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126115/

Cité par Sources :