Route systems of a connected graph
Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 407-414.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The concept of a route system was introduced by the present author in [3].Route systems of a connected graph $G$ generalize the set of all shortest paths in $G$. In this paper some properties of route systems are studied.
DOI : 10.21136/MB.1994.126114
Classification : 05C12, 05C38
Keywords: connected graph; geodetic graph; bipartite graph; route system; shortest paths
@article{10_21136_MB_1994_126114,
     author = {Nebesk\'y, Ladislav},
     title = {Route systems of a connected graph},
     journal = {Mathematica Bohemica},
     pages = {407--414},
     publisher = {mathdoc},
     volume = {119},
     number = {4},
     year = {1994},
     doi = {10.21136/MB.1994.126114},
     mrnumber = {1316593},
     zbl = {0820.05021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126114/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - Route systems of a connected graph
JO  - Mathematica Bohemica
PY  - 1994
SP  - 407
EP  - 414
VL  - 119
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126114/
DO  - 10.21136/MB.1994.126114
LA  - en
ID  - 10_21136_MB_1994_126114
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T Route systems of a connected graph
%J Mathematica Bohemica
%D 1994
%P 407-414
%V 119
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126114/
%R 10.21136/MB.1994.126114
%G en
%F 10_21136_MB_1994_126114
Nebeský, Ladislav. Route systems of a connected graph. Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 407-414. doi : 10.21136/MB.1994.126114. http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126114/

Cité par Sources :