Extending Peano derivatives
Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 387-406.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $H\subset [0,1]$ be a closed set, $k$ a positive integer and $f$ a function defined on $H$ so that the $k$-th Peano derivative relative to $H$ exists. The major result of this paper is that if $H$ has finite Denjoy index, then $f$ has an extension, $F$, to $[0,1]$ which is $k$ times Peano differentiable on $[0,1]$ with $f_i=F_i$ on $H$ for $i=1,2,\ldots,k$.
DOI : 10.21136/MB.1994.126113
Classification : 26A24
Keywords: Peano derivatives; Denjoy index
@article{10_21136_MB_1994_126113,
     author = {Fejzi\'c, Hajrudin and Ma\v{r}{\'\i}k, Jan and Weil, Clifford E.},
     title = {Extending {Peano} derivatives},
     journal = {Mathematica Bohemica},
     pages = {387--406},
     publisher = {mathdoc},
     volume = {119},
     number = {4},
     year = {1994},
     doi = {10.21136/MB.1994.126113},
     mrnumber = {1316592},
     zbl = {0824.26003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126113/}
}
TY  - JOUR
AU  - Fejzić, Hajrudin
AU  - Mařík, Jan
AU  - Weil, Clifford E.
TI  - Extending Peano derivatives
JO  - Mathematica Bohemica
PY  - 1994
SP  - 387
EP  - 406
VL  - 119
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126113/
DO  - 10.21136/MB.1994.126113
LA  - en
ID  - 10_21136_MB_1994_126113
ER  - 
%0 Journal Article
%A Fejzić, Hajrudin
%A Mařík, Jan
%A Weil, Clifford E.
%T Extending Peano derivatives
%J Mathematica Bohemica
%D 1994
%P 387-406
%V 119
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126113/
%R 10.21136/MB.1994.126113
%G en
%F 10_21136_MB_1994_126113
Fejzić, Hajrudin; Mařík, Jan; Weil, Clifford E. Extending Peano derivatives. Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 387-406. doi : 10.21136/MB.1994.126113. http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126113/

Cité par Sources :