Existence of multiple solutions for a third-order three-point regular boundary value problem
Mathematica Bohemica, Tome 119 (1994) no. 2, pp. 113-121.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper we prove an Ambrosetti-Prodi type result for solutions $u$ of the third-order nonlinear differential equation, satisfying $u'(0)=u'(1)=u(\eta)=0,\ 0\leq\eta \leq 1$.
DOI : 10.21136/MB.1994.126080
Classification : 34B10, 34B15
Keywords: boundary value problem; lower and upper solutions; degree theory; Ambrosetti-Prodi type theorem; coincidence degree; Nagumo functions; Ambrosetti-Prodi results
@article{10_21136_MB_1994_126080,
     author = {\v{S}enky\v{r}{\'\i}k, Martin},
     title = {Existence of multiple solutions for a third-order three-point regular boundary value problem},
     journal = {Mathematica Bohemica},
     pages = {113--121},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {1994},
     doi = {10.21136/MB.1994.126080},
     mrnumber = {1293243},
     zbl = {0805.34018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126080/}
}
TY  - JOUR
AU  - Šenkyřík, Martin
TI  - Existence of multiple solutions for a third-order three-point regular boundary value problem
JO  - Mathematica Bohemica
PY  - 1994
SP  - 113
EP  - 121
VL  - 119
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126080/
DO  - 10.21136/MB.1994.126080
LA  - en
ID  - 10_21136_MB_1994_126080
ER  - 
%0 Journal Article
%A Šenkyřík, Martin
%T Existence of multiple solutions for a third-order three-point regular boundary value problem
%J Mathematica Bohemica
%D 1994
%P 113-121
%V 119
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126080/
%R 10.21136/MB.1994.126080
%G en
%F 10_21136_MB_1994_126080
Šenkyřík, Martin. Existence of multiple solutions for a third-order three-point regular boundary value problem. Mathematica Bohemica, Tome 119 (1994) no. 2, pp. 113-121. doi : 10.21136/MB.1994.126080. http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126080/

Cité par Sources :