A dynamical system in a Hilbert space with a weakly attractive nonstationary point
Mathematica Bohemica, Tome 118 (1993) no. 4, pp. 401-423.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A differential equation is a Hilbert space with all solutions bounded but with so finite nontrivial invariant measure is constructed. In fact, it is shown that all solutions to this equation converge weakly to the origin, nonetheless, there is no stationary point. Moreover, so solution has a non-empty $\Omega$-set.
DOI : 10.21136/MB.1993.126159
Classification : 34D99, 34F05, 34G20, 60H15
Keywords: invariant measures; stochastic evolution equations; Hilbert space; compact semigroup; Galerkin approximation; differential equations in Hilbert spaces; $\Omega$-sets
@article{10_21136_MB_1993_126159,
     author = {Vrko\v{c}, Ivo},
     title = {A dynamical system in a {Hilbert} space with a weakly attractive nonstationary point},
     journal = {Mathematica Bohemica},
     pages = {401--423},
     publisher = {mathdoc},
     volume = {118},
     number = {4},
     year = {1993},
     doi = {10.21136/MB.1993.126159},
     mrnumber = {1251884},
     zbl = {0794.34054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126159/}
}
TY  - JOUR
AU  - Vrkoč, Ivo
TI  - A dynamical system in a Hilbert space with a weakly attractive nonstationary point
JO  - Mathematica Bohemica
PY  - 1993
SP  - 401
EP  - 423
VL  - 118
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126159/
DO  - 10.21136/MB.1993.126159
LA  - en
ID  - 10_21136_MB_1993_126159
ER  - 
%0 Journal Article
%A Vrkoč, Ivo
%T A dynamical system in a Hilbert space with a weakly attractive nonstationary point
%J Mathematica Bohemica
%D 1993
%P 401-423
%V 118
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126159/
%R 10.21136/MB.1993.126159
%G en
%F 10_21136_MB_1993_126159
Vrkoč, Ivo. A dynamical system in a Hilbert space with a weakly attractive nonstationary point. Mathematica Bohemica, Tome 118 (1993) no. 4, pp. 401-423. doi : 10.21136/MB.1993.126159. http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126159/

Cité par Sources :