One-sided principal ideals in the direct product of two semigroups
Mathematica Bohemica, Tome 118 (1993) no. 4, pp. 337-342.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A necessary and sufficient condition is given for a) a principal left ideal $L(s,t)$ in $S\times T$ to be equal to the direct product of the corresponding principal left ideals $L(s)\times L(t)$, b) an $\Cal L$-class $L_{(s,t)}$ to be equal to the direct product of the corresponding $\Cal L$-classes $L_s\times L_t$.
DOI : 10.21136/MB.1993.126156
Classification : 20M10, 20M12, 20M15
Keywords: principal left ideal; direct product; direct product of two semigroups
@article{10_21136_MB_1993_126156,
     author = {Fabrici, Imrich},
     title = {One-sided principal ideals in the direct product of two semigroups},
     journal = {Mathematica Bohemica},
     pages = {337--342},
     publisher = {mathdoc},
     volume = {118},
     number = {4},
     year = {1993},
     doi = {10.21136/MB.1993.126156},
     mrnumber = {1251880},
     zbl = {0810.20043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126156/}
}
TY  - JOUR
AU  - Fabrici, Imrich
TI  - One-sided principal ideals in the direct product of two semigroups
JO  - Mathematica Bohemica
PY  - 1993
SP  - 337
EP  - 342
VL  - 118
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126156/
DO  - 10.21136/MB.1993.126156
LA  - en
ID  - 10_21136_MB_1993_126156
ER  - 
%0 Journal Article
%A Fabrici, Imrich
%T One-sided principal ideals in the direct product of two semigroups
%J Mathematica Bohemica
%D 1993
%P 337-342
%V 118
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126156/
%R 10.21136/MB.1993.126156
%G en
%F 10_21136_MB_1993_126156
Fabrici, Imrich. One-sided principal ideals in the direct product of two semigroups. Mathematica Bohemica, Tome 118 (1993) no. 4, pp. 337-342. doi : 10.21136/MB.1993.126156. http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126156/

Cité par Sources :