Generalized solutions of ordinary linear differential equations in the Colombeau algebra
Mathematica Bohemica, Tome 118 (1993) no. 2, pp. 123-146.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper first order systems of linear of ODEs are considered. It is shown that these systems admit unique solutions in the Colombeau algebra $\Cal L(\bold R^1)$.
DOI : 10.21136/MB.1993.126054
Classification : 34A10, 34A12, 34A30, 34G10, 46F05, 46F99, 46N20
Keywords: linear Cauchy problem; Colombeau algebra of generalized distributions; existence; uniqueness; generalized ordinary differential equation; Cauchy problem generalized function; distribution
@article{10_21136_MB_1993_126054,
     author = {Lig\k{e}za, Jan},
     title = {Generalized solutions of ordinary linear differential equations in the {Colombeau} algebra},
     journal = {Mathematica Bohemica},
     pages = {123--146},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {1993},
     doi = {10.21136/MB.1993.126054},
     mrnumber = {1223478},
     zbl = {0776.34046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126054/}
}
TY  - JOUR
AU  - Ligęza, Jan
TI  - Generalized solutions of ordinary linear differential equations in the Colombeau algebra
JO  - Mathematica Bohemica
PY  - 1993
SP  - 123
EP  - 146
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126054/
DO  - 10.21136/MB.1993.126054
LA  - en
ID  - 10_21136_MB_1993_126054
ER  - 
%0 Journal Article
%A Ligęza, Jan
%T Generalized solutions of ordinary linear differential equations in the Colombeau algebra
%J Mathematica Bohemica
%D 1993
%P 123-146
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126054/
%R 10.21136/MB.1993.126054
%G en
%F 10_21136_MB_1993_126054
Ligęza, Jan. Generalized solutions of ordinary linear differential equations in the Colombeau algebra. Mathematica Bohemica, Tome 118 (1993) no. 2, pp. 123-146. doi : 10.21136/MB.1993.126054. http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126054/

Cité par Sources :