$L$-groups versus $k$-groups
Mathematica Bohemica, Tome 118 (1993) no. 2, pp. 113-121.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate free groups over sequential spaces. In particular, we show that the free $k$-group and the free sequential group over a sequential space with unique limits coincide and, barred the trivial case, their sequential order is $\omega_1$.
DOI : 10.21136/MB.1993.126049
Classification : 22A99, 54A20, 54H11
Keywords: sequential convergence; FLUSH-convergence; free $k$-group; free sequential group; sequential space; sequential order
@article{10_21136_MB_1993_126049,
     author = {Fri\v{c}, Roman},
     title = {$L$-groups versus $k$-groups},
     journal = {Mathematica Bohemica},
     pages = {113--121},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {1993},
     doi = {10.21136/MB.1993.126049},
     mrnumber = {1223477},
     zbl = {0812.54004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126049/}
}
TY  - JOUR
AU  - Frič, Roman
TI  - $L$-groups versus $k$-groups
JO  - Mathematica Bohemica
PY  - 1993
SP  - 113
EP  - 121
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126049/
DO  - 10.21136/MB.1993.126049
LA  - en
ID  - 10_21136_MB_1993_126049
ER  - 
%0 Journal Article
%A Frič, Roman
%T $L$-groups versus $k$-groups
%J Mathematica Bohemica
%D 1993
%P 113-121
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126049/
%R 10.21136/MB.1993.126049
%G en
%F 10_21136_MB_1993_126049
Frič, Roman. $L$-groups versus $k$-groups. Mathematica Bohemica, Tome 118 (1993) no. 2, pp. 113-121. doi : 10.21136/MB.1993.126049. http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126049/

Cité par Sources :