Convex isomorphism of $Q$-lattices
Mathematica Bohemica, Tome 118 (1993) no. 1, pp. 37-42.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

V. I. Marmazejev introduced in [3] the following concept: two lattices are convex isomorphic if their lattices of all convex sublattices are isomorphic. He also gave a necessary and sufficient condition under which the lattice are convex isomorphic, in particular for modular, distributive and complemented lattices. The aim this paper is to generalize this concept to the $q$-lattices defined in [2] and to characterize the convex isomorphic $q$-lattices.
DOI : 10.21136/MB.1993.126019
Classification : 06A06, 06A10, 06B15
Keywords: quasiorder; convex isomorphism; $q$-lattices
@article{10_21136_MB_1993_126019,
     author = {Emanovsk\'y, Petr},
     title = {Convex isomorphism of $Q$-lattices},
     journal = {Mathematica Bohemica},
     pages = {37--42},
     publisher = {mathdoc},
     volume = {118},
     number = {1},
     year = {1993},
     doi = {10.21136/MB.1993.126019},
     mrnumber = {1213831},
     zbl = {0780.06002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126019/}
}
TY  - JOUR
AU  - Emanovský, Petr
TI  - Convex isomorphism of $Q$-lattices
JO  - Mathematica Bohemica
PY  - 1993
SP  - 37
EP  - 42
VL  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126019/
DO  - 10.21136/MB.1993.126019
LA  - en
ID  - 10_21136_MB_1993_126019
ER  - 
%0 Journal Article
%A Emanovský, Petr
%T Convex isomorphism of $Q$-lattices
%J Mathematica Bohemica
%D 1993
%P 37-42
%V 118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126019/
%R 10.21136/MB.1993.126019
%G en
%F 10_21136_MB_1993_126019
Emanovský, Petr. Convex isomorphism of $Q$-lattices. Mathematica Bohemica, Tome 118 (1993) no. 1, pp. 37-42. doi : 10.21136/MB.1993.126019. http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126019/

Cité par Sources :