On the limits of solutions of functional differential equations
Mathematica Bohemica, Tome 118 (1993) no. 1, pp. 53-66.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Our aim in this paper is to obtain sufficient conditions under which for every $\xi \in R^n$ there exists a solution $x$ of the functional differential equation $\dot{x}(t)=\int^t_c[d_sQ(t,s)]f(t,x(s)),\ t\in [t_0,T]$ such that $lim_{t\rightarrow T-}x(t)=\xi$.
DOI : 10.21136/MB.1993.126015
Classification : 34K25
Keywords: completeness; functional differential equation; solution; delay
@article{10_21136_MB_1993_126015,
     author = {Pituk, Michal},
     title = {On the limits of solutions of functional differential equations},
     journal = {Mathematica Bohemica},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {118},
     number = {1},
     year = {1993},
     doi = {10.21136/MB.1993.126015},
     mrnumber = {1213833},
     zbl = {0778.34056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126015/}
}
TY  - JOUR
AU  - Pituk, Michal
TI  - On the limits of solutions of functional differential equations
JO  - Mathematica Bohemica
PY  - 1993
SP  - 53
EP  - 66
VL  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126015/
DO  - 10.21136/MB.1993.126015
LA  - en
ID  - 10_21136_MB_1993_126015
ER  - 
%0 Journal Article
%A Pituk, Michal
%T On the limits of solutions of functional differential equations
%J Mathematica Bohemica
%D 1993
%P 53-66
%V 118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126015/
%R 10.21136/MB.1993.126015
%G en
%F 10_21136_MB_1993_126015
Pituk, Michal. On the limits of solutions of functional differential equations. Mathematica Bohemica, Tome 118 (1993) no. 1, pp. 53-66. doi : 10.21136/MB.1993.126015. http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126015/

Cité par Sources :