A matching and a Hamiltonian cycle of the fourth power of a connected graph
Mathematica Bohemica, Tome 118 (1993) no. 1, pp. 43-52.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The following result is proved: Let $G$ be a connected graph of order $geq 4$. Then for every matching $M$ in $G^4$ there exists a hamiltonian cycle $C$ of $G^4$ such that $E(C)\bigcap M=0$.
DOI : 10.21136/MB.1993.126012
Classification : 05C38, 05C40, 05C45, 05C70
Keywords: matching; factors; Hamiltonian cycles; powers of graphs; connected graph
@article{10_21136_MB_1993_126012,
     author = {Nebesk\'y, Ladislav},
     title = {A matching and a {Hamiltonian} cycle of the fourth power of a connected graph},
     journal = {Mathematica Bohemica},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {118},
     number = {1},
     year = {1993},
     doi = {10.21136/MB.1993.126012},
     mrnumber = {1213832},
     zbl = {0780.05046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126012/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - A matching and a Hamiltonian cycle of the fourth power of a connected graph
JO  - Mathematica Bohemica
PY  - 1993
SP  - 43
EP  - 52
VL  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126012/
DO  - 10.21136/MB.1993.126012
LA  - en
ID  - 10_21136_MB_1993_126012
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T A matching and a Hamiltonian cycle of the fourth power of a connected graph
%J Mathematica Bohemica
%D 1993
%P 43-52
%V 118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126012/
%R 10.21136/MB.1993.126012
%G en
%F 10_21136_MB_1993_126012
Nebeský, Ladislav. A matching and a Hamiltonian cycle of the fourth power of a connected graph. Mathematica Bohemica, Tome 118 (1993) no. 1, pp. 43-52. doi : 10.21136/MB.1993.126012. http://geodesic.mathdoc.fr/articles/10.21136/MB.1993.126012/

Cité par Sources :