The structure of $\omega$-limit sets for continuous maps of the interval
Mathematica Bohemica, Tome 117 (1992) no. 1, pp. 42-47.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that every infinite nowhere dense compact subset of the interval $I$ is an $\omega$-limit set of homoclinic type for a continuous function from $I$ to $I$.
DOI : 10.21136/MB.1992.126240
Classification : 26A18, 37C70, 54H20, 58F12
Keywords: discrete dynamical system; continuous map; $\omega$-limit set; homoclinic set
@article{10_21136_MB_1992_126240,
     author = {Bruckner, Andrew M. and Sm{\'\i}tal, Jaroslav},
     title = {The structure of $\omega$-limit sets for continuous maps of the interval},
     journal = {Mathematica Bohemica},
     pages = {42--47},
     publisher = {mathdoc},
     volume = {117},
     number = {1},
     year = {1992},
     doi = {10.21136/MB.1992.126240},
     mrnumber = {1154053},
     zbl = {0762.26003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126240/}
}
TY  - JOUR
AU  - Bruckner, Andrew M.
AU  - Smítal, Jaroslav
TI  - The structure of $\omega$-limit sets for continuous maps of the interval
JO  - Mathematica Bohemica
PY  - 1992
SP  - 42
EP  - 47
VL  - 117
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126240/
DO  - 10.21136/MB.1992.126240
LA  - en
ID  - 10_21136_MB_1992_126240
ER  - 
%0 Journal Article
%A Bruckner, Andrew M.
%A Smítal, Jaroslav
%T The structure of $\omega$-limit sets for continuous maps of the interval
%J Mathematica Bohemica
%D 1992
%P 42-47
%V 117
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126240/
%R 10.21136/MB.1992.126240
%G en
%F 10_21136_MB_1992_126240
Bruckner, Andrew M.; Smítal, Jaroslav. The structure of $\omega$-limit sets for continuous maps of the interval. Mathematica Bohemica, Tome 117 (1992) no. 1, pp. 42-47. doi : 10.21136/MB.1992.126240. http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126240/

Cité par Sources :