Soldered double linear morphisms
Mathematica Bohemica, Tome 117 (1992) no. 1, pp. 68-78.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Our aim is to show a method of finding all natural transformations of a functor $TT^*$ into itself. We use here the terminology introduced in [4,5]. The notion of a soldered double linear morphism of soldered double vector spaces (fibrations) is defined. Differentiable maps $f:C_0\rightarrow C_0$ commuting with $TT^*$-soldered automorphisms of a double vector space $C_0=V^*\times V\times V^*$ are investigated. On the set $Z_s(C_0)$ of such mappings, appropriate partial operations are introduced. The natural transformations $TT^*\rightarrow TT^*$ are bijectively related with the elements of $Z_s((TT^*)_0\bold R^n)$.
DOI : 10.21136/MB.1992.126230
Classification : 53C05, 55R05, 58A20
Keywords: tangent functor; natural transformations; fibrations; double vector space; double vector fibration; soldering
@article{10_21136_MB_1992_126230,
     author = {Van\v{z}urov\'a, Alena},
     title = {Soldered double linear morphisms},
     journal = {Mathematica Bohemica},
     pages = {68--78},
     publisher = {mathdoc},
     volume = {117},
     number = {1},
     year = {1992},
     doi = {10.21136/MB.1992.126230},
     mrnumber = {1154056},
     zbl = {0763.53032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126230/}
}
TY  - JOUR
AU  - Vanžurová, Alena
TI  - Soldered double linear morphisms
JO  - Mathematica Bohemica
PY  - 1992
SP  - 68
EP  - 78
VL  - 117
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126230/
DO  - 10.21136/MB.1992.126230
LA  - en
ID  - 10_21136_MB_1992_126230
ER  - 
%0 Journal Article
%A Vanžurová, Alena
%T Soldered double linear morphisms
%J Mathematica Bohemica
%D 1992
%P 68-78
%V 117
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126230/
%R 10.21136/MB.1992.126230
%G en
%F 10_21136_MB_1992_126230
Vanžurová, Alena. Soldered double linear morphisms. Mathematica Bohemica, Tome 117 (1992) no. 1, pp. 68-78. doi : 10.21136/MB.1992.126230. http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126230/

Cité par Sources :